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the presence of filter versus a static modeling of the return distribution, the choice of 
GARCH versus RiskMetrics conditional variances and the use of monthly versus 
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and for independence show that two daily GARCH-type FHS models perform the 
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indicates that the CRSP value-weighted index, the DAX index and the NIKKEI 225 
index have a 5% probability of a respective loss averaging at least 6.9%, 8.7% and 
9.3% of their value over one month.  

 
JEL classifications: G11, G23 
 
Keywords: VaR models with filtered historical simulation, GARCH models, Unconditional and 
conditional coverage tests, Conservatism tests 
 

 

 

 

§ The authors thank Paul Gallant, Éric Maillé (and his financial ingineering team, Hydro-Québec), Alexandre Roy, Mélissa 
Tremblay and seminar participants at Sherbrooke University for their comments, and Alexandre Fortier and Sébastien Rousseau 
for their excellent research assistance. Stéphane Chrétien gratefully acknowledges the financial support from the Institut de 
finance mathématique de Montréal and the Faculty of Business Administration at Laval University. Frank Coggins gratefully 
acknowledges the financial support of the Faculty of Business at Sherbrooke University. The authors are associated researchers at 
CIRPÉE.  
¤ Department of Finance and Insurance, Faculty of Business Administration, Laval University, Pavillon Palasis-Prince, 2325 rue 
Terrasse, Quebec City (Québec), Canada, G1V 0A6. Email: Stéphane.Chrétien@fas.ulaval.ca. Phone: (418) 656-2131 ext. 3380. 
* Département de finance, Faculté d’administration, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke (Québec), 
J1K 2R1, Canada. Email: Frank.Coggins@usherbrooke.ca. Phone: (819) 821-8000, ext. 65156. 



  

 
PERFORMANCE AND CONSERVATISM OF MONTHLY FHS 

VAR: AN INTERNATIONAL INVESTIGATION 
 

 
 
 
 

Abstract 
 

This study examines sixteen models of monthly Value-at-Risk (VaR) for three equity 
indices with an emphasis on the filtered historical simulation (FHS) technique. We 
investigate the importance of historical simulation versus a parametrized approach, 
the presence of filter versus a static modeling of the return distribution, the choice of 
GARCH versus RiskMetrics conditional variances and the use of monthly versus 
daily data sampling frequencies. Tests for unconditional and conditional coverage 
and for independence show that two daily GARCH-type FHS models perform the 
best. The most conservative daily FHS model, an asymmetric GARCH specification, 
indicates that the CRSP value-weighted index, the DAX index and the NIKKEI 225 
index have a 5% probability of a respective loss averaging at least 6.9%, 8.7% and 
9.3% of their value over one month. 

 



 1

1. INTRODUCTION 
 

In the context of highly volatile and sometimes crisis-prone financial markets, the Value-at-Risk 

(hereafter VaR) measure has become an important risk management instrument for numerous 

organizations1. Conceptually simple, the VaR corresponds to a loss that should only be exceeded 

with a given target probability on a given time horizon. By focusing on the left tail of the return 

distribution, the VaR provides an intuitive measure of the downside risk of an investment.  

 

Following the increased need for reliable quantitative risk management tool, researchers in the last 

few decades have developed a large number of VaR approaches. For example, Kuester, Mittnik 

and Paolella (2006) give a list which includes approaches based on mixture of distributions, 

extreme value theory, quantile regression, regime switching, realized volatility, option-implied 

volatility and stochastic volatility. Among the most promising approaches is the filtered historical 

simulation (hereafter FHS) technique introduced by Barone-Adesi, Bourgoin and Giannopoulos 

(1998) and Barone-Adesi, Giannopoulos and Vosper (1999). The FHS technique is a 

semiparametric method that forecasts the mean and variance of returns through a parametric 

specification and uses the percentile of the standardized returns in order to calculate the VaR. The 

goal of this study is to formally investigate the out-of-sample performance of sixteen models of 

monthly VaR for three equity indices with an emphasis on the FHS technique. We make three 

contributions to the literature.  

 

Our first contribution is to provide a better understanding of the relevance of four important 

methodological features of FHS VaR models through our selection of models. Specifically, our 

choice of models highlights 1- the use of historical simulation, where the realized return 

distribution is assumed to be representative of the one expected over the VaR horizon, versus a 

parametrized approach, where an analytical VaR is computed using a Normal distribution, a 

Student-t distribution or a Cornish-Fisher approximation; 2- the presence of filter, where the 

specification of time variation in returns is required, resulting in a conditional VaR, versus a static 

                                                 
1 VaR applications include the disclosure of risk to officers and shareholders of corporations, the allocation of 
resources and performance evaluation in companies, the risk management of institutional portfolios like pension or 
investment funds, the calculation of the legal capital requirements of financial institutions regulated by the Basle II 
agreement, the risk management of the market positions of brokers and abitragists, etc [Jorion (2006)].  
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modeling of the distribution of returns; 3- the choice of the GARCH-type conditional volatilities of 

Engle (1982), Bollerslev (1986) and Glosten, Jagannathan and Runkle (1993), which have been 

documented to perform well in the academic literature2, versus the JP Morgan’s RiskMetrics-type 

conditional specification, which is particularly popular in the industry; 4- the use of a monthly 

sampling frequency, which corresponds to VaR horizon investigated, versus the compounding of 

daily observations, which could provide more information for precise econometric estimation on 

the dynamics of the return distribution.  

 

Our second contribution is the examination of the monthly VaR horizon and international equity 

market risk relevant to institutional portfolio management. Specifically, the market risk we are 

interested is reflected in the monthly returns on the American CRSP value-weighted index, the 

German DAX index and the Japanese NIKKEI 225 index over the last 50-plus year. Given that the 

risk of positions in brokerage firms must be measured daily and the risk associated with the capital 

requirement of financial institutions, according to the Basle II Committee, needs to be measured 

over ten days, the literature generally evaluates the VaR daily or over ten days. In contrast to daily 

returns, monthly returns follow a distribution with less asymmetry and fat tails, are less 

autocorrelated, and result in a smaller number of observations. Our unique focus on the monthly 

horizon relevant to longer-term investment allows us to investigate the importance of these 

characteristics for the performance of VaR models.  

 

Our third contribution is the application of formal performance and conservatism statistical tests 

for two target probabilities (1% and 5%) to provide a more complete comparison than generally 

reported. Specifically, we apply the unconditional coverage test, the independence test and the 

conditional coverage test of Christoffersen (1998), which measure the ability of VaR models to 

comply with two conditions. First, the proportion of VaR violation, which refer to an event where 

the ex post index loss exceeds the ex ante VaR measure, should be on average equal to the 

theoretical target probability. Second, a VaR violation should not be predictable using available 

information. In particular, the proportions of VaR violation when there is and when there is not a 

VaR violation in the previous period should be on average the same. We also evaluate the 

                                                 
2 For a review of the literature on GARCH models and a discussion of their performance, see Bollerslev, Chou and 
Kroner (1992), Engle and Ng (1993) and Hansen and Lunde (2005).  



 3

conservatism of the best performing VaR models by proposing a ranking coincidence test. The 

most conservative model produces consistently the highest risk measure, which is more prudent.  

 

There is a growing number of studies on VaR models, but there is no consensus model adequate 

for all financial assets, sample frequencies, performance tests, target probabilities and sub-periods. 

On the FHS technique, Hull and White (1998), Barone-Adesi, Giannopoulos and Vosper (1999, 

2002), Christoffersen and Gonçalves (2005), Pritsker (2006), Bao, Lee and Saltoglu (2006), 

Kuester, Mittnik and Paolella (2006), and Angelidis, Benos and Degiannakis (2007) show that this 

approach performs relatively well and argue that it is among the most promising, but in various 

contexts and with different samples than ours3. Comparative studies that do not consider the FHS 

technique include Beder (1996), Hendricks (1996), Alexander and Leigh (1997), Pritsker (1997), 

Mittnik and Paolella (2000), Sarma, Thomas and Shah (2003), Angelidis, Benos and Degiannakis 

(2004), Brooks, Clare, Dalle Molle and Persand (2005), and So and Yu (2006), but they do not 

examine the monthly VaR horizon. Furthermore, only Sarma, Thomas and Shah (2003), Angelidis, 

Benos and Degiannakis (2004), and Kuester, Mittnik and Paolella (2006) apply the conditional 

coverage test of Christoffersen (1998) to an extensive number of VaR models and none of the 

studies examine the conservatism test.  

 

Our empirical results highlight only two VaR models not rejected at the 95% confidence level with 

regard to each test, i.e. the two models with historical simulation using daily GARCH-type filters 

(GARCH(1,1) and asymmetrical GARCH(1,1)). These two FHS models, which generate the most 

volatile VaR measures, are satisfactory for the three performance tests of Christoffersen (1998), at 

the 1% and 5% target probabilities of VaR violation, and for the three equity indices. They thus 

provide adequate values of the market risk at monthly horizon for institutional portfolios. The 

conservatism tests suggest that the asymmetrical GARCH model is the most conservative of the 

two. Its VaR results indicate that the CRSP value-weighted index has 5% and 1% probabilities to 

                                                 
3 Hull and White (1998) examine daily VaR for the returns on ten exchange rates and five stock indexes from 1988 to 
1998. Barone-Adesi, Giannopoulos and Vosper (1999, 2002) present VaR with horizons from one to ten days for the 
returns on futures, options and swaps from 1994 to 1997. Christoffersen and Gonçalves (2005) look at estimation risk 
for one-day VaR with a simulation study using resampling methods. Pritsker (2006) estimates 10-day VaR for the 
returns on the UK pound/US dollar exchange rate from 1973 to 1997. Bao, Lee and Saltoglu (2006) compute daily 
VaR for the stock returns on five Asian countries from 1996 to 1999. Kuester, Mittnik and Paolella (2006) examine 
daily VaR for the returns on the NASDAQ index from 1971 to 2001. Angelidis, Benos and Degiannakis (2007) 
estimate daily VaR for the returns on the DJ Euro Stoxx large and small capitalization indices from 1987 to 2005.   
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lose on average 6.9% and 12.2% of its value over one month, respectively, whereas the DAX 

index shows corresponding losses of 8.7% and 15.3%, and the NIKKEI 225 index shows 

corresponding losses of 9.3% and 18.2%.  

 

An examination of our results in terms of the methodological features of the FHS technique, the 

importance of the specific characteristics of monthly returns, and the application of formal 

performance tests lead to the following observations. First, the kurtosis in monthly equity returns, 

which is relatively small compare to the one in daily returns, is still sufficiently important that fat 

distribution tails need to be considered in the VaR specification. For example, the parametric VaR 

models relying on a Normal distribution fare worse than the ones based on a Student-t distribution 

in the unconditional coverage tests, which show that all rejected models underestimate the 

frequency of extreme losses. The historical simulation technique is generally able to account for 

the fat tails through its use of the realized return distribution.  

 

Second, an adequate specification of the volatility dynamics is important for the success of 

monthly VaR models. The unconditional VaR models, which put relatively little emphasis on 

recent returns, are generally underperforming the conditional VaR models with respect to the 

independence tests, as they greatly underestimate the frequency of consecutive VaR violations. 

The independence tests also reveal that the RiskMetrics conditional volatility specification has 

more difficulty than the GARCH specification, although all the FHS models examined adjust 

relatively well to risk variations predictable from its immediate past.  

 

Third, the use of daily rather than monthly data in monthly FHS model improves the performance 

in the three tests of Christoffersen (1998), especially at the 1% target probability. This 

improvement is related to a better estimation of the conditional volatilities as the larger number of 

daily observations allows more precise estimates of the ARCH, GARCH and asymmetry effects 

than the smaller monthly sample. 

 

The next section describes the sixteen monthly VaR models considered. The third section outlines 

the performance and conservatism tests. The fourth section discusses the data. The fifth section 

provides the empirical results and the last section concludes. 
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2. THE MONTLHY VAR MODELS 
 

This section presents the montlhy VaR models. The first subsection presents the parametric and 

historical simulation models estimated with monthly data whereas the second subsection describes 

the estimation of montlhy VaR with filtered historical simulation using daily data.  

 

2.1 MONTHLY VAR MODELS USING MONTHLY DATA 

 

2.1.1 Parametric VaR  

 

We define the monthly parametric VaR for portfolio p at the period T+1 by one of three functions 

according to whether the returns could be characterized by a Normal or Student-t distributions or a 

Cornish-Fisher approximation:  

 

1,1,1, ++
−
+ ⋅+−= TpTp

NPar
TpVaR σαμ ,               (1a) 

1,
1

1,1, )(2
+

−
+

−
+ ⋅⋅

−
+−= TpTp

tPar
Tp dt

d
dVaR σμ ,                (1b) 

1,
1

1,1, +
−

+
−
+ ⋅+−= TpTp

CFPar
Tp CFVaR σμ ,                (1c) 

 

where 1, +Tpμ  represents the monthly expected return of portfolio p on the VaR horizon (T+1) 

and 1, +Tpσ  is the standard deviation of monthly returns of portfolio p on the VaR horizon. The 

equation 1a implies that the return 1, +TpR  is a normally distributed random variable with a 

mean 1, +Tpμ  and a variance 2
1, +Tpσ  [ ),(~ 2

1,1,1, +++ TpTpTp NR σμ ]. To account for the fat distribution tails 

generally observed in financial returns, we also consider in equation 1b a parametric VaR that 

assumes that the standardized error term of portfolio p follows a Student-t distribution where d 

corresponds to the degrees of freedom and is equal to 4)/)(/(6 4
1,

4
1,1, +− +++ TpTpTpRE σμ . To allow for 

skewness and kurtosis, we also consider in equation 1c a parametric VaR that can be approximated 
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by the Cornish-Fisher quantile4. Thus, α , )(1 dt −  and 1−CF  represent the number of standard 

deviations associated with the target probability (pr) of a VaR violation according to the normal or 

Student-t distributions or the Cornish-Fisher approximation, respectively.  

 

2.1.2 VaR with Historical Simulation 

 

Without explicitly parametrizing the distribution, this approach assumes that the historical return 

distribution is representative of the expected return distribution. For the probability pr of a VaR 

violation, the VaR with historical simulation is obtained by drawing the 100pr percentile of the 

distribution of the historical error terms5 [ Tpseudo
Tp 11, ][ =−+ ττε ], i.e. the historical deviations from the 

expected return. It can be written as follows: 

 

{ }prPercentileVaR Tpseudo
Tp

HS
Tp Tp

100,][ 11,1, 1, =++ −+
−−= ττ

εμ    (2) 

 

2.1.3 Specification of the First and Second Moments 

 

We study monthly VaR with unconditional and conditional first and second moments. 

 

2.1.3.1 Unconditional Specifications 

 

If the portfolio returns are identically and independently distributed (i.i.d.), an unconditional 

specification of the first and second moments calculated from t to T leads to adequate estimates of 

the mean and volatility of returns at T+1. Then, we can describe unconditional parametric VaR 

models based on the normal distribution (equation 3a), the Student-t distribution (equation 3b), the 

Cornish-Fisher approximation (equation 3c) as well as the unconditional VaR with historical 

simulation (equation 4) as follows: 

 

                                                 
4 With 1−CF  = [ ] [ ] [ ]αααααα 5231 3

36
3

24
2

6

2

−−−+−+
SKS  and where S and K are respectively the skewness and the 

excess kurtosis coefficients. 
5 For some methodologies, these error terms are called pseudo-shocks.  
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Tp

HSInc
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where ( )∑
=

+ =
T

t
tpTp R

T 1
,1,

1μ , ( ) )1/(
2

1
1,,1, −−= ∑

=
++ TR

T

t
TptpTp μσ . We thus obtain three unconditional 

parametric VaR, normal, Student-t and Cornish-Fisher, by computing the historical mean and 

standard deviation of returns, and also the degrees of freedom in the case of the Student-t 

distribution and the skewness and excess kurtosis coefficients in the case of the Cornish-Fisher 

approximation. We furthermore determine the unconditional VaR with historical simulation by 

drawing from the 100pr percentile of the historical return distribution. We study the performance 

of the models estimated with data samples of the last five or fifteen years. Hereafter, we identify 

them as follows: Uncond. normal, Uncond. Student-t, Uncond. Cornish-Fisher and Unconditional.  

 

2.1.3.2 Conditional Specifications  

 

Conditional modeling can be described in two stages. The first stage determines the specification 

of the conditional expected return of portfolio p ( 1, +Tpμ ). Ljung-Box tests on the autocorrelation of 

monthly returns discriminate among ARMA models the one which best characterizes the portfolio 

returns. We also examine the explanatory power of the ARMA models for various VaR horizons 

and for the full sample of data6. In the second stage, we check for the presence of autocorrelation 

in the squared error terms using Ljung-Box and ARCH tests. In the presence of autocorrelation, we 

                                                 
6 For details on ARMA models, see Chap. 3 of Hamilton (1994). In light of our results and similar to Busse (2001), we 
evaluate the first conditional moment with a MA(1) model, i.e. the process 1,,,,,,1, ++ ++= TkpTkpkpkpTp cR εεφ  

with ),0(~ 2
1,,1,, ++ TkpTkp N σε , where kpc , is a constant, kp,φ  captures the autocorrelation in the error terms, and 

2
1,, +Tkpσ  represents the conditional error term variance. The index k distinguishes between the various conditional 

variance specifications.   
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estimate the conditional variance using either the RiskMetrics exponential weighting, 

GARCH(1,1) or GJR-GARCH(1,1) models. 

 

The RiskMetrics (RM) exponential weighting model specifies the variance at T+1 as a weighted 

average of the squared return and variance at T: 

 
2

,,
2

,
2

1,, )1( TRMpTpTRMp R λσλσ +−=+ ,            (5) 

 

where the parameterλ  is lower than one. As this parameter moves away from one, the variance at 

T+1 puts more emphasis on the squared return at T and less emphasis on all the other squared 

returns7. In this study, we assume thatλ = 0.97, one of the values suggested by RiskMetrics for the 

estimation of the second moments of monthly returns.  

 

The GARCH(1,1) model of Bollerslev (1986) measures the conditional variance as follows: 

 
2

,,
2

,,
2

1,, TGARCHpTGARCHpTGARCHp βσαεωσ ++=+ ,            (6) 

 

whereω  is a constant related to the unconditional variance,α  is the parameter of the ARCH effect 

and captures the link between the variance at T+1 and the squared error term at T [ 2

Tε ] and 

β  represents the GARCH effect as it measures the persistence of the previous squared error terms 

on the conditional variance [Engle (1982), Bollerslev (1986) and Chou (1988)].  

 

The GJR-GARCH(1,1) model, proposed by Glosten, Jagannathan and Runkle (1993), considers 

the asymmetrical effect of the positive and negative error terms on the conditional variance: 

 
2

,,,,
2

,,
2

,,
2

1,, TGJRpTGJRpTGJRpTGJRpTGJRp I εγβσαεωσ −
+ +++= ,   (7) 

 

                                                 
7 For more details on the conditional RiskMetrics specification, see Jorion (2006), Christoffersen (2003) or the 
technical documentation of JP Morgan on RiskMetrics.  
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The parameterγ  measures the asymmetrical effect of the negative error terms since −I  is a binary 

variable that takes a value of one if the error term is negative and zero otherwise.  

 

We can rewrite the equation for the unconditional parametric VaR models using the conditional 

mean and variance specifications to obtain the conditional parametric VaR models: 

 

 1,,1,,
,
1, +++ +−= TkpTkp
kPar

TpVaR ασμ ,  (8) 

 

for k = RM, GARCH(1,1) or GJR-GARCH(1,1). 1,, +Tkpμ  is the conditional expected return of 

portfolio p at T+1. In the case of the RiskMetrics VaR model, the conditional expected return is 

constant, while in the case of the two GARCH-type VaR models, we use a MA(1) model8. 1,, +Tkpσ  is 

the standard deviation of returns at T+1 from one of the three conditional variance specifications. 

Finally, we consider parametric VaR models with a MA(1)-GJRGARCH(1,1) specification for the 

first two moments of the return distribution and either a Student-t distribution to account for fat 

tails or a Cornish-Fisher approximation for both the skewness and kurtosis. Specifically, we 

replace α  by )(1 dt −  or 1−CF  in the equation above. Hereafter, we identify these conditional 

parametric VaR models as follows: RiskMetrics, MA(1)-GARCH(1,1), MA(1)-GJRGARCH(1,1), 

MA(1)-GJRGARCH(1,1)-t(d) and MA(1)-GJRGARCH(1,1)-CF. 

 

Similarly, we can modify the equation for the VaR model with historical simulation to account for 

the mean and variance dynamics to obtain the VaR models with filtered historical simulation: 

 

{ }przPercentileVaR T
TkpTkpTkp

kHS
Tp 100,][ 11,,1,,1,,

,
1, =+−+++ ⋅−−= ττ σμ ,   (9) 

 

for k = RM, GARCH(1,1) or GJR-GARCH(1,1). The variable tTkpz −+1,,  represents the standardized 

error term at T+1-t, i.e. ⎥
⎦

⎤
⎢
⎣

⎡

−+

−+

tTkp

tTkp

1,,

1,,

σ
ε

, for t = 1, …, T. The VaR with filtered historical simulation is 

                                                 
8 Specifically, TkpkpkpTkp c ,,,,1,, εφμ +=+  where 0, =kpφ for k = RM.  
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thus a function of the standardized error term related to the target probability (pr) of a return 

exceeding the VaR, multiplied by the estimate of the standard deviation at the VaR horizon (T+1). 

By adding this pseudo-shock to the conditional expected return, it results in a conditional VaR 

with historical simulation for each of the three variance specifications. Hereafter, these three VaR 

models with historical simulation are denoted RiskMetrics, MA(1)-GARCH(1,1)-MD and MA(1)-

GJRGARCH(1,1)-MD, where MD refers to the use of monthly data. The next section outlines 

monthly VaR models with historical simulation using daily data. 

 

2.2 MONTLHY VAR MODELS WITH FILTERED HISTORICAL SIMULATION USING DAILY DATA 

 

Barone-Adesi, Giannopoulos and Vosper (2002) propose (but do not implement) VaR models with 

historical simulation using GARCH-type filter on returns measured at a higher frequency than the 

VaR horizon. In this spirit, we compute monthly VaR with filtered historical simulation using a 

sample of T monthly pseudo-returns, each simulated from Nt daily returns (Nt working days in 

month t) with an ARMA-GARCH filter9. Steps in the estimation of monthly VaR models with this 

methodology can be summarized in the following way.  

 

First, we obtain standardized error terms from an ARMA-GARCH regression with the 3900 

previous daily returns, or about fifteen years of data preceding the VaR evaluation date. This 

model can be written as follows: 

 

jkpjkpjp uR ,,,,, ε+= ,      (10) 

 

where ) ,0(~ 2
,,,, jkpjkp N σε , for j = 1,…, 3900 and for k = GARCH(1,1) or GJR-GARCH(1,1). 

 

The next step consists in randomly drawing with replacement the ith of the Nt standardized error 

terms of the month
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

jkp

jkp
ikpz

,,

,,
,, σ

ε
 from the sample of observations, i.e. for j between 1 and 3900 

                                                 
9 Giannopoulos (2003) also suggests using daily returns at the monthly horizon, but for the specific purpose of forming 
daily observations of overlapping monthly returns when the number of months in the period studied is insufficient.  
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and for each specification k. The ith of the Nt filtered daily returns ( '
,, ikpR ) of the month is then a 

function of the daily conditional expected return ( ikp ,,μ ) and the daily conditional standard 

deviation ( ikp ,,σ ), which are recomputed at each working day i. For each specification k, this ith 

filtered daily return is calculated as follows: 

 

ikpikpikpikp zR ,,,,,,
'

,, σμ ⋅+= , for i = 1, …, Nt.    (11) 

 

The filtered monthly return of portfolio p at period t ( '

,, tkpR ) is then determined by compounding the 

Nt daily returns, where Nt varies according to the month and year. The monthly return ( '

,, tkpR ) then 

becomes one of the T observations of the return distribution leading to the VaR estimation. More 

specifically, the last step consists in evaluating the VaR using the distribution of the T generated 

monthly returns, with T = 1000 in this study, as follows:  

 

{ }prRPercentileVaR T
tkp

kHSDay
Tp 100,][ 1

'
,,

,
1, =+ −= τ ,   (12) 

 

for k = GARCH(1,1) or GJR-GARCH(1,1). The VaR is thus determined by drawing from the 

distribution of filtered returns the return associated with the target probability (pr) of a VaR 

violation. Hereafter, we denote these two VaR models as MA(1)-GARCH(1,1)-DD and MA(1)-

GJRGARCH(1,1)-DD. The next section discusses the performance and conservatism tests.  

 

3. PERFORMANCE AND CONSERVATISM TESTS 
 

We apply three likelihood ratio tests using the interval forecast method developed by 

Christoffersen (1998) to evaluate the ability of the VaR models to meet the target probabilities of 

VaR violation. According to these tests, a VaR model should meet two conditions. Firstly, the 

proportion of VaR violation should be on average equal to the theoretical target probability pr. The 

following unconditional coverage test (see also the binomial evaluation method of Kupiec, 1995) 

examines this hypothesis:  
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where 1n  and 0n  are the number of VaR violations and non-violations, respectively, and
10

1
nn

n
+  

represents the empirical probability of VaR violation. If this test results in a rejection, then the 

VaR model is biased as it produces an incorrect proportion of VaR violation.  

 

Secondly, a VaR violation should not be predictable using available information. In particular, the 

proportions of VaR violation when there is and when there is not a VaR violation in the previous 

period should be on average the same. The following independence test examines this hypothesis:  
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where 01n  and 00n  are the number of VaR violations and non-violations following a non-violation, 

respectively, and 
0100

01
nn

n
+ represents the empirical probability of VaR violation following a non-

violation, and where 11n  and 10n  are the number of VaR violations and non-violations following a 

violation, respectively, and 
1110

11
nn

n
+ represents the empirical probability of VaR violation following a 

violation. If this test results in a rejection, then a VaR violation is predictable from the immediate 

past and is thus not purely random.   

 

Lastly, a VaR model should meet jointly the two preceding conditions. The following conditional 

coverage test examines this hypothesis:  

 

)2(~ 2χindunccond LRLRLR += .        (15) 

 

If this test results in a rejection, then the cases of VaR violations are not simultaneously 

independent and of a proportion corresponding to the target probability.  



 13

 

In addition, we examine a ranking coincidence test to determine if, among the best performing 

VaR models with respect to the tests of Christoffersen (1998), some VaR models are more 

conservative than others. The model with the highest VaR is considered the most conservative 

since it indicates the highest risk, which translates into the most prudent risk measure. The null 

hypothesis is that the VaR of two different models are ranked in a purely random way. The 

following conservatism test examines this hypothesis by using the index of coincidence developed 

by Friedman (1920):  

 

[ ] )1(~)5,1()5,1(2 22
2

2
1 χ−+−= VaRVaR RRMIC ,      (16) 

 

where M is the number of observations common to both VaR models, ∑
=

=
M

m
mVaRVaR R

M
R

1
,11

1 is the 

average rank of the VaR1 model compared to the VaR2 model, ( )21 ,1,1 == mVaRmVaR RR  if the VaR1 

model is more (less) conservative than the VaR2 model for observation m, and 12 3 VaRVaR RR −= is 

the average rank of the VaR2 model. If this test results in a rejection, then the VaR model with the 

highest average rank is the most conservative. The next section describes the data. 

 

4. DATA 
 

We study the performance and conservatism of sixteen monthly VaR models for three stock 

indices, the American CRSP value-weighted index, the German DAX index and the Japanese 

NIKKEI 225 index. The monthly series of the CRSP, DAX and NIKKEI indices begin in January 

1950, January 1965 and February 1960, respectively, and end in January 2008. Their daily series 

go from July 1st, 1963, January 5th, 1965, and January 4th, 1960, respectively, and end on January 

31st, 2008, for the Japanese index. The data source is the web site of Prof. Kenneth French for the 

CRSP Index and Datastream for the two other series. In each month, we use a moving window of 

the previous fifteen years for the VaR estimation. Our study thus obtains a maximum of 498 

montlhy VaR for each model10.  

                                                 
10 For the unconditional VaR models, we also estimate the models based on the previous five years of monthly data.  
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Table 1 presents descriptive statistics of the daily and monthly index returns. At the monthly 

frequency, the German index has a higher standard deviation and kurtosis than the two other 

indices. Based on this result, we anticipate larger monthly VaR values for the DAX index. For all 

the series, the worst return occurs during the crash of October 1987. The skewness and kurtosis 

coefficients suggest that the historical daily and monthly returns do not follow a normal 

distribution as they show fat tails. The Jarque-Bera tests indicate that the normality hypothesis is 

rejected at the 99% confidence level. The VaR models that do not account for these characteristics 

should have difficulty in passing the coverage tests of Christoffersen (1998).  

 

[Please insert Table 1 here] 

 

We also reject at the 99% confidence level the hypothesis that the daily and monthly returns are 

serialy independent. The Q2-tests for five lags show that the squared returns are autocorrelated, so 

that the return variances are predictable. We furthermore reject at the 99% confidence level the 

hypothesis of no autocorrelation in daily returns, but are not able to reject the hypothesis for 

monthly returns. This result is partially explained by the presence of microstructure elements in 

high frequency returns. Given the significant autocorrelation in squared monthly returns, 

conditional VaR models should outperform their unconditional counterpart.  

 

Overall, comparing the descriptive statistics of the daily and monthly returns, monthly returns 

follow a distribution with less asymmetry and fat tails, are less autocorrelated, and result in a 

smaller number of observations. These characteristics could lead to best performing monthly VaR 

models different from the best performing daily VaR models documented in the literature. The 

next section discusses our empirical results. 

 

5. EMPIRICAL RESULTS ON THE VAR MODELS 
 

This section presents the empirical results. The first section shows summary statistics of the VaR 

models. The second section gives the results of the performance tests of Chirstoffersen (1998). For 

the best performing models with regard to the performance tests, we discuss in the third section 

their conservatism on a pairwise basis.  
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5.1 DESCRIPTIVE STATISTICS  

 

Table 2 presents summary statistics of the VaR estimated for different indices (CRSP, DAX and 

NIKKEI), models (nine parametric VaR models and seven VaR models with historical simulation) 

and target probabilities (5% and 1%)11. As anticipated from the descriptive statistics of the 

monthly returns, the DAX index is riskier than the other indices according to the VaR. Also, the 

conditional approach leads to more volatile VaR values than the unconditional approach. This 

higher volatility is caused by the larger sensitivity to recent returns in the conditional models, 

whereas the unconditional models consider the effect of past returns over a long sample. The VaR 

models showing the highest average VaR values and the highest VaR volatility use filtered 

historical simulation with daily data or is based on a conditional Student-t distribution approach. 

[MA(1)-GARCH(1,1)-DD, MA(1)-GJRGARCH(1,1)-DD or MA(1)-GJRGARCH(1,1)-t(d)]12.  

 

[Please insert Table 2 here] 

 

5.2 PERFORMANCE TESTS 

 

5.2.1 Unconditional Coverage Tests 

 

Table 3 gives the results of the unconditional coverage test uncLR . This test evaluates the ability of 

the VaR models to meet the target probabilities of VaR violation. Overall, six models are never 

rejected at the 95% confidence level: the two models based on the Student-t distribution, the two 

unconditional models with historical simulation, as well as the two models with historical 

simulation using a daily filter. At the 5% target probability, seven models show empirical 

probabilities that are significantly too high for the CRSP index, but there is only one rejected 

model for each of the two other indices. At the 1% target probability, a majority of models are 

rejected for all indices. The proportions of VaR violation for the rejected models are generally 

                                                 
11 We do not estimate the unconditional VaR with historical simulation using a five-year estimation window at the 1% 
target probability since the 1st percentile of 60 observations is not sufficiently informative.  
12 We do not report the parameter estimates of the models due to limited space and the fact that the results are typical 
of the existing literature. For example, we find ARCH, GARCH and asymmetry (GJRGARCH) effects in the error 
terms that are generally significant and more important in daily than monthly data.  
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between 7% and 10% at the 5% target probability, and between 2% and 4% at the 1% target 

probability. The rejected models thus underestimate the frequency of the extreme losses.  

 

 [Please insert Table 3 here] 

 

A comparative analysis of the results for the parametric VaR models reveals that those relying on 

the Student-t distribution, which has fat tails, perform better than those based on the normal 

distribution. For the VaR models with historical simulation, the use of daily rather than monthly 

data improves the performance, especially at the 1% target probability. This improvement is 

related to the better estimation of the conditional volatilities with 3700 daily returns than with 180 

monthly returns. The daily data allow more precise estimates of the ARCH, GARCH and 

asymmetry (GJRGARCH) effects. 

 

5.2.2 Independence Tests 

 

Whereas the preceding section analyzes the proportions of VaR violation for the full sample, the 

independence test indLR of Christoffersen (1998) checks if the proportions of VaR violation are 

significantly different depending on whether there is or is not a VaR violation in the previous 

period. Table 4 reports the proportions of VaR violation in the period following a VaR violation, 

and the significance of the independence test on whether these proportions are different from the 

ones following a non-violation.  

 

[Please insert Table 4 here] 

 

The independence tests show that numerous VaR models obtain empirical probabilities of VaR 

violation in the period following a VaR violation greater than 10%, thus greatly underestimating 

the frequency of consecutive extreme losses. The highest proportions generally belong to the 

unconditional models. At the 5% target probability, all six unconditional models, but only two of 

the ten conditional models, are rejected for at least two of the three indices. In particular, none of 

the VaR models with filtered historical simulation are rejected. The joint consideration of fat 

distribution tails and conditional volatility dynamics is responsible for the success of these models. 
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At the 1% target probability, we do not reject any model for the CRSP index and only reject three 

VaR models for both other indices: the two unconditional parametric models using a normal 

distribution and 5 or 15-year estimation windows and the unconditional model with historical 

simulation. The independence test may lack power as almost no consecutive return belonging to 

the 1% extremity of the left distribution tail occurs in the available sample13. Overall, the VaR 

models with filtered historical simulation using a daily filter are the only models that they have not 

been rejected by any test yet.  

 

5.2.3 Conditional Coverage Tests 

 

The conditional coverage test condLR of Christoffersen (1998) jointly examines the proportion of 

VaR violation for the full sample and the independence of VaR violations for two consecutive 

periods. Table 5 provides the results. For each target probability and at the 90% confidence level, 

three models are not rejected for all three indices. At the 5% target probability, these models are 

the unconditional parametric model using a normal distribution with a 5-year estimation window 

and the two VaR models with historical simulation and a daily filter [(MA(1)-GARCH(1,1)-DD 

and MA(1)-GJRGARCH(1,1)-DD)]. At the 1% target probability, they are the parametric 

GJRGARCH model with a Student-t distribution and the two VaR models with historical 

simulation and a daily filter. The RiskMetrics VaR model with historical simulation also performs 

relatively well, as it is only rejected for the CRSP index at the 5% target probability and for the 

DAX index at the 1% target probability.  

 

[Please insert Table 5 here] 

 

As an estimate of the loss incurred beyond the value announced by the VaR, Table 5 also reports 

the average deviation between the realized return and the VaR when all models simultaneously 

have a VaR violation14. The unconditional parametric VaR model with a Student-t distribution is 

the model that obtains consistently among the smallest average losses. However, this model is 

                                                 
13 On the issue of power, see also Christoffersen (1998), Lopez (1998) and Christoffersen and Pelletier (2004).  
14 The average deviation is not available for the NIKKEI index at the 1% target probability as there is no observation 
when there is a VaR violation for all models.  
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rejected in the conditional coverage tests for the three indices. As expected, the two VaR models 

never rejected by the conditional coverage tests (the models with historical simulation and a daily 

filter) show small average deviations. For example, at the 5% target probability, the average 

deviations for the MA(1)-GARCH(1,1)-DD and MA(1)-GJRGARCH(1,1)-DD models are -6.00% 

and -5.75%, respectively, while the deviations of the other models average -7.18%.  

 

In summary, not only the two VaR models with daily filtered historical simulation perform well in 

all the conditional coverage tests, but they are the only ones never rejected by any of the three 

performance tests of Christoffersen (1998) at the 95% confidence level. Our empirical evidence 

thus supports the use of these two models because they simultaneously present an adequate mean 

level of risk and adjust quickly to risk variations predictable from their immediate past. The next 

section determines which of the most performing models is the most conservative. For each target 

probability, we study the conservatism of the VaR models that are never rejected at the 90% 

confidence level in the conditional coverage tests.  

 

5.3 CONSERVATISM TESTS 

 

The conservatism test IC examines the null hypothesis that the VaR of two different models are 

ranked in a purely random way. In a rejection, the model with the highest VaR is considered the 

most conservative because it suggests a more prudent risk level. Conservatism is only an 

interesting characteristic for VaR models that perform well with respect to the tests previously 

discussed. In this section, we thus compare the three best performing VaR models identified 

previously for each target probability. At the 5% target probability, we study the conservatism of 

the parametric unconditional model using a normal distribution and a 5-year estimation window 

and the two VaR models with historical simulation and a daily filter [(MA(1)-GARCH(1,1)-DD 

and MA(1)-GJRGARCH(1,1)-DD)]. At the 1% target probability, we apply the conservatism test 

to the parametric GJRGARCH model with a Student-t distribution and the two VaR models with 

daily filtered historical simulation. These models are the only ones never rejected at the 90% 

confidence level in the conditional coverage tests of Christoffersen (1998). Table 6 has the test 

results as well as the proportion of observations where a model is more conservative than another.  
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 [Please insert Table 6 here] 

 

The results in Table 6 reject the hypothesis that the ranking between the best performing VaR 

models is randomly drawn in thirteen of the eighteen cases tested. At the 5% target probability, the 

most conservative model is the MA(1)-GJRGARCH(1,1)-DD, as it shows significantly higher-

ranked risk measures for two of the three indices. This model obtains the highest VaR measures for 

68% of the CRSP index observations and 59% of the NIKKEI index observations compare to the 

MA(1)-GARCH(1,1)-DD model, which is the second most conservative model. The unconditional 

parametric model using a normal distribution obtains significantly lower-ranked risk measures.   

 

At the 1% target probability, the most conservative model is the parametric GJRGARCH model 

with a Student-t distribution for two of the three indices. This model gets the highest-ranked risk 

measures with proportions of 58% for the CRSP index and 75% for the DAX index compare to the 

second most conservative model, the MA(1)-GJRGARCH(1,1)-DD model. Our results also 

indicate that the MA(1)-GJRGARCH(1,1)-DD model is significantly more conservative than the 

MA(1)-GARCH(1,1)-DD model for the three indices. 

 

Overall, the MA(1)-GJRGARCH(1,1)-DD model is to be the most conservative model among the 

two VaR models with daily filtered historical simulation. This finding highlights the role of the 

asymmetrical effect in the conditional variance in terms of conservatism. In the implementation of 

a monthly risk management program based on a threshold VaR, our results suggest that the 

portfolio manager can benefit from using the MA(1)-GJRGARCH(1,1)-DD VaR model because it 

is one of the most prudent among the best performing models. The next section concludes.  

 

6. CONCLUSION 
 

This article examines the performance and conservatism of sixteen monthly VaR models to 

estimate the risk on the American CRSP value-weighted index, the German DAX index and the 

Japanese NIKKEI 225 index. We study three parametric VaR models that assume a normal 

distribution and are based on three different conditional variance specifications, i.e. RiskMetrics, 

GARCH(1,1) and GJRGARCH(1,1), and two parametric VaR models with a GJRGARCH(1,1) 
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specification and a Student-t distribution or a Cornish-Fisher approximation. We also study three 

VaR models with filtered historical simulation using the three above conditional variance 

specifications [Hull and White (1998) and Barone-Adesi, Giannopoulos and Vosper (2002)]. The 

last two conditional VaR models use historical simulation with either a GARCH(1,1) or 

GJRGARCH(1,1) specifications, but with daily data rather than monthly data [Barone-Adesi, 

Giannopoulos and Vosper (1999, 2002)]. The other VaR models, either parametric using normal or 

Student-t distributions, or a Cornish-Fisher approximation, or with historical simulation, are 

unconditional and are evaluated with samples of either five years or fifteen years of historical data. 

We estimate the VaR models at the 1% and 5% target probabilities of VaR violation.  

 

The coverage and independence tests of Christoffersen (1998) reveal that only the monthly VaR 

models with daily filtered historical simulation and the GARCH(1,1) or GJRGARCH(1,1) 

volatility specifications are never rejected by any of the tests at the 95% confidence level. These 

two VaR models, which generate the most volatile values, obtain an adequate expected proportion 

of VaR violation, and do not present an abnormal probability of a VaR violation immediately after 

another one. They thus best succeed in capturing the fat tails of the return distribution and adapting 

to the changing market conditions. Among these two models, the conservatism tests indicate that 

the model with the GJRGARCH(1,1) specification is the most conservative, thus providing the 

most prudent measure of risk.  

 

The parametric VaR models using a normal distribution have statistically higher than expected 

proportions of VaR violation, especially at the 1% target probability. The bad performance of these 

models is partly explained by the inability of the Normal distribution to capture the fat tails of the 

index return distribution. The unconditional VaR models, which put relatively little emphasis on 

recent returns, are generally underperforming the conditional VaR models with respect to the 

independence tests. Specifically, the unconditional VaR models have a larger-than-expected 

propensity to obtain two consecutive VaR violations, suggesting that they do not adjust quickly to 

the dynamics of financial market risk.  
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Table 1 

Descriptive Statistics of the Equity Index Returns 
 

The monthly data for the value-weighted CRSP (United States), DAX (Germany) and NIKKEI 225 (Japan) equity 
indices cover the periods from 01/1950 to 01/2008, from 01/1965 to 01/2008 and from 02/1960 to 01/2008, 
respectively. The daily data end on 01/31/2008 for the three indices, but start on 07/01/1963 for the CRSP index, on 
01/05/1965 for the DAX index and on 01/04/1960 for the NIKKEI index. Panel A shows the number of observations, 
mean, standard deviation, maximum, minimum, skewness and kurtosis for the return series. Panel B presents the 
results of the Jarque-Bera tests on normality, and of the Q-tests on return autocorrelation and Q2-tests on squared 
return autocorrelation for 5 lag returns (K=5). The *, ** and *** symbols indicate statistical significance at the 90%, 
95% and 99% confidence levels, respectively.   
 
Panel A: Summary Statistics  
 

International Index  
Number  Mean  Std Dev 

 
Maximum  Minimum  Skewness  Kurtosis 

Daily Data  (×100)      
CRSP 11263 0.043 0.009 0.087 -0.171 -0.719 20.138 
DAX 10787 0.031 0.012 0.093 -0.128 -0.217 9.959 
NIKKEI 11897 0.030 0.012 0.132 -0.149 -0.161 11.116 
   

Monthly Data        
CRSP 697 0.010 0.042 0.166 -0.225 -0.476 5.013 
DAX 517 0.007 0.056 0.214 -0.254 -0.357 5.031 
NIKKEI 576 0.006 0.053 0.201 -0.192 -0.250 3.923 
    

Panel B: Normality and Independence Tests 
 

International Index  Jarque-Bera Test 
 

Q-test 
(K=5) 

Q2 test 
(K=5) 

Daily Data    
CRSP 138800.800***      155.560*** 1 551.100*** 
DAX   21853.750***        26.192*** 2 675.500*** 
NIKKEI   32701.620***       22.854*** 1 500.400*** 
   

Monthly Data    
CRSP 144.061***  7.271 21.389*** 
DAX  99.852***  1.394 32.319*** 
NIKKEI  26.444***  3.498  62.479*** 
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Table 2 

Descriptive Statistics of the Montlhy VaRs 
 

This table provides the mean and standard deviation of the monthly VaRs estimated for the CRSP index (United 
States), DAX index (Germany) and NIKKEI index (Japan) for each model. Panels A and B report the results for the 
target probabilities of VaR violation of 5% and 1%, respectively. The monthly VaR series using monthly data end in 
01/2008 and start at the earliest in 01/1965 for the CRSP index, in 01/1980 for the DAX index and in 01/1975 for the 
NIKKEI index. For a description of the VaR models, see Section 2. For a description of the data, see Table 1.  
 
VaR Models CRSP DAX NIKKEI 

Panel A: Pr( pp VaRR −< ) = 5% Mean Std Dev Mean Std Dev Mean Std Dev 

Parametric VaR       
Uncond. Normal (5 years) 6.2% 1.6% 8.5% 2.7% 7.9% 3.1% 
Uncond. Normal (15 years) 6.0% 0.8% 8.1% 1.0% 8.0% 1.9% 
Uncond. Student-t 7.5% 1.0% 10.0% 1.3% 9.7% 2.2% 
Uncond. Cornish-Fisher 5.3% 1.1% 7.5% 0.7% 7.5% 2.1% 
MA(1)-GARCH(1,1) 6.0% 1.8% 8.4% 2.9% 8.0% 3.5% 
MA(1)-GJRGARCH(1,1) 5.7% 2.8% 8.4% 2.4% 8.2% 3.8% 
RiskMetrics 7.3% 1.2% 9.5% 2.2% 8.6% 2.2% 

  MA(1)-GJRGARCH(1,1)-t(d) 7.0% 3.4% 10.2% 2.9% 10.0% 4.5% 
  MA(1)-GJRGARCH(1,1)-CF 5.0% 2.4% 8.1% 2.3% 7.9% 3.7% 
VaR with Historical Simulation       

Unconditional (5 years) 6.9% 1.8% 9.8% 3.7% 8.4% 3.5% 
Unconditional (15 years) 6.0% 0.7% 7.9% 1.4% 7.7% 2.2% 
MA(1)-GARCH(1,1)-MD 6.1% 2.0% 8.3% 3.2% 7.9% 3.7% 
MA(1)-GJRGARCH(1,1)-MD 5.6% 2.7% 8.2% 2.7% 8.1% 3.9% 
RiskMetrics 6.3% 1.5% 8.5% 2.4% 7.3% 2.2% 
MA(1)-GARCH(1,1)-DD  6.8% 3.2% 8.6% 3.7% 9.2% 4.6% 
MA(1)-GJRGARCH(1,1)-DD 6.9% 3.1% 8.7% 3.7% 9.3% 4.4% 

    

Panel B: Pr( pp VaRR −< ) = 1% Mean SD Mean SD Mean SD 

Parametric VaR       
Uncond. Normal (5 years) 9,1% 2,1% 12,4% 3,7% 11,4% 4,1% 
Uncond. Normal (15 years) 8,9% 1,1% 11,8% 1,5% 11,5% 2,5% 
Uncond. Student-t 13,0% 1,7% 17,0% 2,4% 16,3% 3,2% 
Uncond. Cornish-Fisher 8,8% 2,1% 12,1% 1,0% 11,9% 2,6% 
MA(1)-GARCH(1,1) 8,9% 2,5% 12,2% 4,2% 11,6% 4,9% 
MA(1)-GJRGARCH(1,1) 8,5% 4,0% 12,2% 3,5% 11,9% 5,3%
RiskMetrics 10,3% 1,7% 13,4% 3,1% 12,2% 3,1% 

  MA(1)-GJRGARCH(1,1)-t(d) 12,1% 5,6% 17,2% 4,9% 16,7% 7,2% 
  MA(1)-GJRGARCH(1,1)-CF 8,3% 3,9% 12,6% 3,4% 12,5% 6,3% 
VaR with Historical Simulation       

Unconditional (15 years) 9,7% 1,4% 13,8% 3,6% 13,5% 2,5% 
MA(1)-GARCH(1,1)-MD 9,5% 2,9% 13,5% 5,3% 12,4% 5,0% 
MA(1)-GJRGARCH(1,1)-MD 8,9% 4,6% 13,3% 4,5% 12,9% 5,4% 
RiskMetrics 9,6% 2,1% 13,4% 3,8% 12,4% 4,1% 
MA(1)-GARCH(1,1)-DD  11,4% 5,3% 14,7% 6,6% 17,0% 8,5% 
MA(1)-GJRGARCH(1,1)-DD 12,2% 5,8% 15,3% 6,9% 18,2% 9,0% 
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Table 3 

Unconditional Coverage Tests for the Montlhy VaR Models 
 

This table presents the results of the unconditional coverage test proposed by Christoffersen (1998). It shows the 
number of estimated VaRs and the empirical probability of VaR violation for the CRSP index (United States), DAX 
index (Germany) and NIKKEI index (Japan) for each model. Panels A and B report the results for the target 
probabilities of VaR violation of 5% and 1%, respectively. The *, ** and *** symbols indicate that the likelihood ratio 
of the unconditional coverage test is statistically significant at the 90%, 95% and 99% confidence levels, respectively. 
For a description of the VaR models, see Section 2. For a description of the data, see Table 1.  
 

VaR Models CRSP DAX NIKKEI 
 
Panel A: Pr( pp VaRR −< ) = 5%  

 
N 

Empirical 
Prob of 

Exceeding

 
N 

Empirical 
Prof of 

Exceeding 

 
N 

Empirical 
Prob of 

Exceeding 
Parametric VaR       

Uncond. Normal (5 years) 517 6.770%* 337 5.638% 396 5.303% 
Uncond. Normal (15 years) 517 5.996% 337 6.528% 396 4.545% 
Uncond. Student-t 517 3.675% 337 4.748% 396 3.788% 
Uncond. Cornish-Fisher 517 8.511%*** 337 7.122%* 396 4.798% 
MA(1)-GARCH(1,1) 506 7.115%** 320 5.625% 389 6.427% 
MA(1)-GJRGARCH(1,1) 517 7.544%** 329 5.775% 384 5.208% 
RiskMetrics 517 4.255% 337 5.045% 396 3.030%* 

  MA(1)-GJRGARCH(1,1)-t(d) 517 5.029% 329 4.559% 384 3.906% 
  MA(1)-GJRGARCH(1,1)-CF 517 9.478%*** 329 6.383% 384 5.469% 
VaR with Historical Simulation       

Unconditional (5 years) 517 5.029% 337 5.341% 396 4.293% 
Unconditional (15 years) 517 6.383% 337 6.825% 396 5.051% 
MA(1)-GARCH(1,1)-MD 506 6.917%* 320 5.938% 389 5.913% 
MA(1)-GJRGARCH(1,1)-MD 517 7.737%*** 329 6.383% 384 5.469% 
RiskMetrics 517 6.383% 337 5.935% 396 5.808% 
MA(1)-GARCH(1,1)-DD  355 3.662% 337 5.341% 397 3.778% 
MA(1)-GJRGARCH(1,1)-DD 355 3.662% 337 4.748% 397 4.282% 

   

Panel B: Pr( pp VaRR −< ) = 1%   

Parametric VaR  
Uncond. Normal (5 years) 517 2.321%*** 337 3.264%*** 396 1.768% 
Uncond. Normal (15 years) 517 2.515%*** 337 2.967%*** 396 2.020%* 
Uncond. Student-t 517 0.774% 337 1.187% 396 1.010% 
Uncond. Cornish-Fisher 517 3.288%*** 337 3.264%*** 396 1.768% 
MA(1)-GARCH(1,1) 506 2.569%*** 320 2.500%** 389 2.828%***
MA(1)-GJRGARCH(1,1) 517 2.128%** 329 3.040%*** 384 2.083%* 
RiskMetrics 517 1.547% 337 2.374%** 396 2.020%* 

  MA(1)-GJRGARCH(1,1)-t(d) 517 0.967% 329 0.912% 384 0.521% 
  MA(1)-GJRGARCH(1,1)-CF 517 4.062%*** 329 2.736%*** 384 2.083%* 
VaR with Historical Simulation       

Unconditional (15 years) 517 1.934%* 337 2.077%* 396 1.515% 
MA(1)-GARCH(1,1)-MD 506 2.174%** 320 2.500%* 389 2.057%* 
MA(1)-GJRGARCH(1,1)-MD 517 2.708%*** 329 2.128%* 384 1.563% 
RiskMetrics 517 1.741% 337 2.374%** 396 1.515% 
MA(1)-GARCH(1,1)-DD  355 1.127% 337 1.484% 397 0.252%* 
MA(1)-GJRGARCH(1,1)-DD 355 0.845% 337 1.484% 397 0.252%* 
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Table 4 

Independence Tests for the Montlhy VaR Models 
 

This table presents the results of the independence test proposed by Christoffersen (1998). It shows the number of 
estimated VaRs and the empirical probability of VaR violation following a VaR violation, represented by 
N11/(N11+N10), for the CRSP index (United States), DAX index (Germany) and NIKKEI index (Japan) for each 
model. Panels A and B report the results for the target probabilities of VaR violation of 5% and 1%, respectively. The 
*, ** and *** symbols indicate that the likelihood ratio of the independence test is statistically significant at the 90%, 
95% and 99% confidence levels, respectively. For a description of the VaR models, see Section 2. For a description of 
the data, see Table 1.  
VaR Models CRSP DAX NIKKEI 
Panel A: Pr( pp VaRR −< ) = 5%  
 

 
N )1011(

11
NN

N
+

 
 

N )1011(
11
NN

N
+

 
 

N )1011(
11
NN

N
+

 

Parametric VaR       
Uncond. Normal (5 years) 517 11.765% 337 16.667%* 396 15.000%* 
Uncond. Normal (15 years) 517 20.000%*** 337 14.286% 396 17.647%** 
Uncond. Student-t 517 21.053%*** 337 20.000%** 396 21.429%** 
Uncond. Cornish-Fisher 517 25.581%*** 337 21.739%** 396 16.667%* 
MA(1)-GARCH(1,1) 506 17.143%** 320 6.250% 389 8.333% 
MA(1)-GJRGARCH(1,1) 517 5.263% 329 17.647%* 384 5.556% 
RiskMetrics 517 14.286%* 337 18.750%** 396 9.091% 

  MA(1)-GJRGARCH(1,1)-t(d) 517 0.000%* 329 23.077%** 384 0.000% 
  MA(1)-GJRGARCH(1,1)-CF 517 6.250% 329 15.789% 384 5.263% 
VaR with Historical Simulation       

Unconditional (5 years) 517 12.000% 337 17.647%* 396 18.750%** 
Unconditional (15 years) 517 21.875%*** 337 13.636% 396 21.053%** 
MA(1)-GARCH(1,1)-MD 506 12.121% 320 11.765% 389 4.545% 
MA(1)-GJRGARCH(1,1)-MD 517 5.128% 329 15.789% 384 5.263% 
RiskMetrics 517 15.625%* 337 15.789% 396 13.636% 
MA(1)-GARCH(1,1)-DD  355 0.000% 337 5.882% 397 0.000% 
MA(1)-GJRGARCH(1,1)-DD 355 0.000% 337 6.667% 397 11.765% 

   

Panel B: Pr( pp VaRR −< ) = 1%   

Parametric VaR       
Uncond. Normal (5 years) 517 0.000% 337 20.000%** 396 16.667%* 
Uncond. Normal (15 years) 517 7.692% 337 22.222%** 396 12.500%* 
Uncond. Student-t 517 0.000% 337 0.000% 396 25.000%* 
Uncond. Cornish-Fisher 517 11.765% 337 20.000%** 396 14.286% 
MA(1)-GARCH(1,1) 506 0.000% 320 14.286% 389 0.000%*** 
MA(1)-GJRGARCH(1,1) 517 0.000% 329 12.500% 384 0.000% 
RiskMetrics 517 0.000% 337 14.286% 396 14.286%* 

  MA(1)-GJRGARCH(1,1)-t(d) 517 0.000% 329 0.000% 384 0.000% 
  MA(1)-GJRGARCH(1,1)-CF 517 5.000% 329 14.286% 384 0.000% 
VaR with Historical Simulation       

Unconditional (15 years) 517 10.000% 337 28.571%*** 396 33.333%*** 
MA(1)-GARCH(1,1)-MD 506 0.000% 320 14.286% 389 0.000% 
MA(1)-GJRGARCH(1,1)-MD 517 0.000% 329 20.000%* 384 0.000% 
RiskMetrics 517 0.000% 337 14.286% 396 20.000% 
MA(1)-GARCH(1,1)-DD  355 0.000% 337 0.000% 397 0.000% 
MA(1)-GJRGARCH(1,1)-DD 355 0.000% 337 0.000% 397 0.000% 
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Table 5 

Conditional Coverage Tests for the Monthly VaR Models 
 

This table presents the results of the conditional coverage test proposed by Christoffersen (1998). It shows the average 
deviation between the return and the VaR when all models have a VaR violation, represented by 

)( ,ipppp VaRRVaRR −<+ , and the likelihood ratio of the conditional coverage test for the CRSP index (United States), 

DAX index (Germany) and NIKKEI index (Japan) for each model. Panels A and B report the results for the target 
probabilities of VaR violation of 5% and 1%, respectively. The *, ** and *** symbols indicate that the likelihood ratio 
of the conditional coverage test is statistically significant at the 90%, 95% and 99% confidence levels, respectively. 
For a description of the VaR models, see Section 2. For a description of the data, see Table 1.  
 

VaR Models  CRSP DAX NIKKEI 
Panel A: Pr( pp VaRR −< ) = 5% 
 )

(

,ipp

pp

VaRR

VaRR

−<

+  Likelihood
Ratio  )

(

,ipp

pp

VaRR

VaRR

−<

+ Likelihood
Ratio  )

(

,ipp

pp

VaRR

VaRR

−<

+  Likelihood
Ratio  

Parametric VaR       
Uncond. Normal (5 years) -7.498% 4.430 -8.206% 3.293 -6.371% 2.846 
Uncond. Normal (15 years) -7.148% 8.510** -7.951% 3.239 -6.899% 4.497 
Uncond. Student-t -5.555% 10.810*** -6.054% 4.864* -5.255% 7.738** 
Uncond. Cornish-Fisher -7.968% 23.873*** -8.679% 8.405** -7.304% 3.786 
MA(1)-GARCH(1,1) -7.380% 8.571** -8.486% 0.265 -7.104% 1.678 
MA(1)-GJRGARCH(1,1) -8.006% 6.631** -7.798% 3.577 -6.908% 0.039 
RiskMetrics -5.908% 4.222 -6.719% 4.153 -5.250% 4.688* 

  MA(1)-GJRGARCH(1,1)-t(d) -6.707% 2.756 -5.969% 6.000** -5.288% 2.097 
  MA(1)-GJRGARCH(1,1)-CF -8.644% 18.401*** -8.179% 3.446 -7.079% 0.174 
VaR with Historical Simulation       

Unconditional (5 years) -7.138% 2.093 -7.183% 3.634 -6.224% 5.384*
Unconditional (15 years) -7.623% 11.125*** -8.040% 3.514 -6.922% 6.425** 
MA(1)-GARCH(1,1)-MD -7.592% 4.764* -8.543% 1.436 -7.054% 0.730 
MA(1)-GJRGARCH(1,1)-MD -8.386% 7.651** -7.853% 3.446 -6.858% 0.174 
RiskMetrics -7.155% 5.691* -7.500% 3.120 -7.075% 2.491 
MA(1)-GARCH(1,1)-DD  -6.468% 2.458 -6.863% 0.091 -4.657% 2.536 
MA(1)-GJRGARCH(1,1)-DD -5.909% 2.458 -6.523% 0.161 -4.830% 2.159 

       
Panel B: Pr( pp VaRR −< ) = 1%   

Parametric VaR       
Uncond. Normal (5 years) -14.872% 7.211** -11.032% 15.439*** - 4.885* 
Uncond. Normal (15 years) -12.514% 9.446*** -11.385% 13.921*** - 5.369* 
Uncond. Student-t -8.249% 0.368 -7.312% 0.208 - 5.009* 
Uncond. Cornish-Fisher -11.299% 19.630*** -10.029% 15.439*** - 4.581 
MA(1)-GARCH(1,1) -13.011% 9.465*** -10.603% 7.166** - 9.421*** 
MA(1)-GJRGARCH(1,1) -15.649% 5.495* -10.326% 10.406*** - 3.767 
RiskMetrics -11.621% 1.624 -8.711% 6.759** - 5.620* 

  MA(1)-GJRGARCH(1,1)-t(d) -12.902% 0.123 -5.960% 0.045 - 1.101 
  MA(1)-GJRGARCH(1,1)-CF -14.776% 27.830*** -8.836% 8.662** - 3.810 
VaR with Historical Simulation       

Unconditional (15 years) -14.630% 5.426* -11.896% 10.909*** - 10.865*** 
MA(1)-GARCH(1,1)-MD -11.430% 5.763* -11.896% 7.166** - 3.654 
MA(1)-GJRGARCH(1,1)-MD -11.303% 11.166*** -9.816% 6.185** - 1.206 
RiskMetrics -14.990% 2.702 -9.193% 6.759** - 4.569
MA(1)-GARCH(1,1)-DD  -11.860% 0.147 -9.405% 0.814 - 3.210 
MA(1)-GJRGARCH(1,1)-DD -11.626% 0.142 -11.033% 0.814 - 3.210 

   



 28

Table 6 

Conservatism Tests for the Monthly VaR Models 
This table presents the results of the conservatism test using the pairwise ranking coincidence test proposed by 
Friedman (1920). It shows the index of coincidence and, in parentheses, the proportion of observations where the 
model identified in the same row is more conservative than the model identified in the same column, for the CRSP 
index (United States), DAX index (Germany) and NIKKEI index (Japan). The tests are applied to the three best 
models with regard to the conditional coverage tests for each target probability. Panels A and B report the results for 
the target probabilities of VaR violation of 5% and 1%, respectively. The *, ** and *** symbols indicate that the index 
of coincidence of the conservatism test is statistically significant at the 90%, 95% and 99% confidence levels, 
respectively. For a description of the VaR models, see Section 2. For a description of the data, see Table 1.  

Panel A: Pr( pp VaRR −< ) = 5%  
  

CRSP index MA(1)-GARCH(1,1)-DD MA(1)-GJRGARCH(1,1)-DD 
Uncond. Normal (5 years)  26.504*** 

[36.338%] 
71.214*** 
[27.606%] 

MA(1)-GARCH(1,1)-DD  
 

43.099*** 
[32.394%] 

  

DAX index   
Uncond. Normal (5 years) 0.074 

[49.258%] 
0.667 

[47.775%] 
MA(1)-GARCH(1,1)-DD  

 
3.635* 

[44.807%] 
   

NIKKEI  index   
Uncond. Normal (5 years) 24.252*** 

[37.626%] 
20.455*** 
[38.636%] 

MA(1)-GARCH(1,1)-DD  
 

13.423*** 
[40.806%] 

Panel B: Pr( pp VaRR −< ) = 1%  
  

CRSP index MA(1)-GARCH(1,1)-DD MA(1)-GJRGARCH(1,1)-DD 
MA(1)-GJRGARCH(1,1)-t(d) 38.561*** 

[66.479%] 
9.1521*** 
[58.028] 

MA(1)-GARCH(1,1)-DD 
 

44.014*** 
[32.394%] 

  

DAX index   
MA(1)-GJRGARCH(1,1)-t(d) 86.811*** 

[75.684%] 
74.921*** 
[73.860%] 

MA(1)-GARCH(1,1)-DD  
 

23.505*** 
[36.795%] 

  

NIKKEI  index   
MA(1)-GJRGARCH(1,1)-t(d) 0.010 

[49.740%] 
1.500 

[46.875%] 
MA(1)-GARCH(1,1)-DD  

 
35.670*** 
[35.013%] 

 
 




