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1. Introduction 

Value-at-Risk (hereafter VaR) plays a leading role in evaluating and managing the financial risks 

taken by institutional investors1. For example, VaR measures are useful in disclosing risk to 

senior executives and institutional shareholders, in monitoring the risk and performance of 

institutional portfolios such as pension and investment funds, and in managing the risk of market 

positions of traders and arbitragists. Despite these numerous applications, most studies focus on 

VaR for calculating the capital requirements of financial institutions regulated by the Basle 

Committee. These studies reveal that VaR varies widely depending on the methodology and that 

there is no consensus VaR model adequate in all situations2. As a misleading VaR estimate can 

lead to bad judgment on portfolio risk and, consequently, to bad investment decisions, there is a 

need for an examination of VaR applications in the context of institutional investors. 

 

In this study, we consider two issues that are relevant for institutional investors looking for a 

satisfactory VaR. First, as institutional portfolios are selected combinations of assets, the 

evaluation of portfolio risk could benefit from disaggregating the portfolio returns into its 

underlying asset returns. It is thus interesting to contrast multivariate VaR approaches, with the 

modeling of the returns on each portfolio asset, to univariate VaR approaches, where only 

aggregate portfolio returns are modeled. In particular, it is worth investigating whether 

multivariate estimation leads to out-of-sample VaR predictions that are more effective as the 

information pertaining to each asset is taken into account, or less effective as over-

parametrization is a possibility.  

                                                 
1 VaR is defined as a portfolio loss for a given horizon that should only be exceeded at a given target probability. 
2 See Kuester, Mittnik and Paolella (2006)1 for an overview of this literature and a comparative analysis of a large 

number of VaR models.  
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Second, given typical investment horizons of institutional investors, the evaluation of portfolio 

risk should be made over longer horizon (one month or more) than the VaR horizons prevalent in 

the literature (one to ten days, following the Basle II agreement). It is not clear that best 

performing VaR models at very short horizons can continue their success at longer horizons as 

returns over different horizons do not present the same characteristics. For example, compare to 

daily returns, monthly returns follow a distribution with less asymmetry and fat tails, are less 

autocorrelated, and result in a smaller sample of observations for precise estimation. Such 

characteristics could work against difficult-to-estimate VaR models with complex conditional 

specification of the return process.  

 

To address these issues, this study investigates the performance of sixteen univariate or 

multivariate models of monthly portfolio VaR. We consider six conditional filtered historical 

simulation (hereafter FHS) models (Hull and White, 19982; Barone-Adesi, Bourgoin and 

Giannopoulos, 19983; Barone-Adesi, Giannopoulos and Vosper, 19994, 20025), six conditional 

Monte Carlo simulation (hereafter MCS) models (Alexander and Leigh, 19976; Ferreira and 

Lopez, 20057) and four basic unconditional models. The conditional models have time-varying 

volatilities using either the GARCH specification of Bollerslev (1986)8, the asymmetric GARCH 

specification of Glosten, Jagannathan and Runkle (1993)9 or the RiskMetrics exponential 

weighting specification of J.P. Morgan & Co10. We estimate the models to measure the risk at 

monthly horizon of an equally-weighted portfolio of three equity indexes (the U.S. S&P 500, the 

German DAX and the Japanese Nikkei) from 1960 to 2006. Then, we formally assess their out-

of-sample predictive ability using the unconditional coverage test, the independence test and the 

conditional coverage test proposed by Christoffersen (1998)11.  
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The VaR approach emphasized in our investigation involves the multivariate FHS technique 

introduced by Barone-Adesi, Gionnopoulos and Vosper (19994, 20025). The FHS technique is a 

semiparametric method that forecasts the mean and variance of returns through a parametric 

specification and uses the percentile of the standardized returns in order to calculate the VaR. In 

a univariate context with a focus on very short horizons, Hull and White (1998)2, Pritsker 

(2006)12, Bao, Lee and Saltoglu (2006)13, Kuester, Mittnik and Paolella (2006)1, and Angelidis, 

Benos and Degiannakis (2007)14 show that it performs relatively well as it is able to account for 

the asymmetry, fat tails and changing moments of returns.  

 

Given the issues relevant for institutional investors mentioned earlier, two features of 

multivariate FHS models are particularly interesting. First, the multivariate simulation involves 

drawing the standardized error terms of all portfolio assets at a random date to generate 

simulated asset returns. As discussed by Barone-Adesi, Giannopoulos and Vosper (19994, 

20025), the grouping of error terms by date preserves the observed co-movements between asset 

prices, which can be time-varying and more pronounced during extreme events, without 

requiring difficult-to-estimate conditional correlations. Second, as filtering with a parametric 

specification can capture the time dependence between returns, it is possible to estimate FHS 

models using daily data and then compound the simulated daily returns to obtain a VaR at 

monthly horizon. Chrétien, Coggins and Gallant (2008)15 show that this strategy improves the 

performance of FHS VaR at monthly horizon in a univariate setting, as the large number of daily 

observations allow more precise estimates of the parametric specification. Our selection of 

sixteen VaR models is in part made to understand the importance of these features.  
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Our empirical investigation leads to the following findings. In the unconditional coverage test, 

all models underestimate the risk of the equally-weighted international portfolio at the monthly 

horizon, as the proportions of VaR violations (i.e. realized losses greater than the VaR) are larger 

than the 1% or 5% target probabilities. At the 90% confidence level, the tests never reject only 

four VaR models: the unconditional historical simulation model estimated with monthly returns, 

the univariate FHS and MCS models with asymmetric GARCH volatility specification estimated 

with daily returns, and the univariate FHS model estimated with daily GARCH volatility. In the 

independence test, the results show that unconditional models generate abnormally high 

proportions of consecutive VaR violations, but support the conditional models. Finally, in the 

conditional coverage test, the joint examination of the unconditional coverage and independence 

hypotheses confirms that the best performing models are generally based on an asymmetric 

GARCH volatility and FHS simulations.  

 

A comparative analysis of the sixteen models highlights the keys to the success of these models. 

The single most important feature is the asymmetric GARCH specification, which allows 

negative shocks to have more impact than positive shocks on the conditional volatility. Another 

feature of the models, namely the FHS technique that accounts for the skewness and fat tails of 

the realized return distribution, also leads to noticeable improvement in VaR model performance. 

Finally, the multivariate approach that considers the information in the disaggregate portfolio 

return is not marginally better performing than the univariate approach, suggesting that the 

evaluation of monthly portfolio risk does not benefit from the added complexity of the 

multivariate approach. 
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The rest of the paper is divided as follow. The next section outlines the sixteen VaR models 

under consideration as well as some issues regarding their implementation and testing. The third 

section discusses the data. The fourth section presents and interprets the empirical results. The 

last section provides our conclusion.  

 

2. Monthly VaR Models 

This section describes the monthly VaR models analyzed in this study. The first two subsections 

detail univariate models with MCS and FHS techniques, respectively. These models are 

univariate in that they fit and simulate directly the aggregate portfolio returns. The third 

subsection discusses multivariate MCS and FHS VaR models that fit and simulate each 

disaggregate asset returns separately before forming the portfolio. The fourth subsection gives 

the unconditional VaR models that serve as basic reference to the more sophisticated models. 

The fifth subsection specifies some implementation choices and introduces the tests of 

Christoffersen (1998)11 that assess the performance of the VaR models.  

 

An important aspect of the MCS and FHS models we consider is their use of daily data to obtain 

monthly VaR measures. To facilitate the understanding of these models, we can summarize their 

implementation with a four-step procedure. First, we specify and estimate a return diffusion 

process for daily returns using data up to the last day of the month preceding the VaR 

measurement. Second, we simulate the return diffusion process into the future to obtain paths of 

daily simulated or pseudo returns with a number of observations corresponding to the number of 

working days in the month of the VaR measurement. Third, we compound the daily simulated 

returns in each path to find its corresponding monthly simulated return. Fourth, we draw from all 



 

 6

the simulation paths the monthly simulated return that corresponds to the target probability of 

VaR violation. We now turn to a detailed description of these steps for each of the VaR models.  

 

2.1 Univariate MCS VaR Models 

The univariate MCS VaR models presume that portfolio returns (or aggregate returns) follow a 

conditionally Normal distribution. They specify the first moments with a MA(1) model3 and the 

second moments with a RiskMetrics, GARCH or asymmetric GARCH models. Specifically, as 

in Christoffersen (2003), we describe the return diffusion process for day t [ tR ] as follows: 

 

 tjtttjt cR ,11, )( σηησφ ++= −− , for t = 1,…, T, (1) 

 

where )1 ,0(~ Ntη . The parameter c represents the mean return, while the parameter 

φ measures the time dependence. The variable tj ,σ  is the conditional standard deviation of the 

error terms, which is estimated from one of three cases of conditional variance model j.  

 

In the first case, j = RM, the RiskMetrics exponential weighting model of J.P. Morgan and Co10. 

describes the conditional variance as a function of the past squared return and the past 

conditional variance: 

 

 2
1,

2
1

2
, )1( −− +−= tRMttRM R λσλσ , (2) 

 

                                                 
3 This choice is based on a comparison of various ARMA specifications using the tests of Ljung and Box (1979)16. 

Results (not reported) show that the MA(1) model proves to be the most powerful specification. 
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where the parameter λ  must be less than one. As this parameter moves away from the unit 

value, there is greater emphasis on the first past squared return and less emphasis on all the other 

past squared returns. In this study, we setλ = 0.94, one of the value suggested by RiskMetrics for 

evaluating second moments4.  

 

In the second case, j = GARCH, the GARCH(1,1) model specifies the conditional variance as 

follows (Engle, 1982; Bollerslev, 1986): 

 

 2
1,

2
1,1,1,

2
, )( −−−− ++= tGARCHtGARCHtptptGARCH βσησαωσ , (3) 

 

where the parameter ω  is related to the unconditional variance, the parameter α corresponds to 

the ARCH effect and captures the link with the past squared error term [ 2
1,1,1, )( −−− tGARCHtptp ησ ], 

and the parameter β  represents the GARCH effect, measuring the autocorrelation of the 

conditional variance (Bollerslev, 19868 and Chou, 198817). 

 

In the third case, j = GJRGARCH, the GJRGARCH(1,1) model introduces an asymmetrical 

effect of the positive and negative error terms on the conditional variance following Glosten, 

Jagannathan and Runkle (1993)9 and Engle and Ng (1993)18. The conditional variance model 

may be written as follows: 

 

2
1,1,1,1,

2
1,

2
1,1,1,

2
, )()( −−−

−
−−−−− +++= tGJRGARCHtptptGJRGARCHtGJRGARCHtGJRGARCHtptptGJRGARCH I ησγβσησαωσ , (4) 

                                                 
4 The RM specification also assumes a constant conditional mean, so that φ = 0 in equation (1). For more details 

regarding the model, see Christoffersen (2003)19, Jorion (2006)20 or J.P. Morgan & Co.'s10 related technical 
documentations. 
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where the parameter γ  measures the asymmetrical effect of negative error terms, since −I is a 

binary variable taking the value one if the error term is negative and zero otherwise. The 

asymmetric effect can be justified by the increased leverage (debt ratio) of companies following 

a decline in their equity returns, resulting in their increased risk as measured by their variance. 

 

Once Equation (1) has been estimated for each conditional variance model j with daily returns up 

to day T, we simulate the return diffusion process into the future to obtain paths of simulated 

returns. Specifically, we generate random variables [ 1, +Tjiη( ] from a standardized Normal 

distribution, N(0,1). The simulated return for the first day (at T +1) of path i then corresponds to: 

 

 1,1,,,1, )( +++ ++= TjTjiTjTjTji cR σηησφ ((
, (5) 

 

for j = RM, GARCH or GJRGARCH. This first simulated return is a function of the last error 

term [ )( ,, TjTj ησ ] from the estimation of Equation (1), and the product of the random variable 

and the standard deviation estimated from the conditional variance model j. Paths of M simulated 

daily returns are similarly obtained by generating as many random variables as there are working 

days in the month and by reevaluating at each day the conditional means and variances using the 

different conditional variance models.  

  

We next compound the M daily simulated returns to obtain a monthly return [ MTTjiR ++ :1,

(
] for each 

path i = 1,…, MC, where MC is the total number of generated paths. The monthly MCS VaR can 
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finally be measured by drawing from the MC paths the monthly pseudo-return that corresponds 

to the target probability p = pr( pp VaRR −< ) of VaR violation: 

 

 ( )( )pRPercentileVaR
MC

iMTTji
p

MTTj 100,
1:1,:1, =++++ −=

(
, (6) 

 

for j = RM, GARCH or GJRGARCH. Each month, we evaluate three monthly univariate MCS 

VaR models corresponding to the three conditional volatility specifications. In the empirical 

section, we denote these models as UMCSRM, UMCSGARCH and UMCSGJRGARCH, 

respectively. The next subsection discusses the monthly univariate FHS VaR models. 

 

2.2 Univariate FHS VaR Models 

Since financial returns cannot be precisely characterized by a theoretical distribution, several 

institutions opt for the empirical distribution of realized returns to calculate their VaR measures. 

By construction, the empirical distribution accounts for the asymmetry and fat tails in returns. 

But the shortcoming of this approach is that it presumes that returns are independent, which is 

not supported by the empirical literature (Engle, 198221; Lo and MacKinlay, 199022; etc.). To 

address the dependence in returns, Barone-Adesi, Bourgoin and Giannopoulos (1998)3 and Hull 

and White (1988)2 propose a VaR with a filtered historical simulation that controls for the 

autocorrelation in the first two moments of the distribution, while still accounting for its 

asymmetry and fat tails. In this study, we estimate monthly FHS VaR models using daily data.  

 

The univariate FHS VaR models presume that return diffusion process of daily portfolio returns 

(or aggregate returns) can be written as follows: 
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 tjtjt cR ,1, εεφ ++= − , for t = 1,…, T, (7) 

 

where ) ,0(~ 2
,, tjtj N σε . As in Equation (1), tj ,σ  refers to the standard deviation of the error term 

obtained from the conditional variance model j, for j = RM, GARCH or GJRGARCH.  

 

Using estimates from Equation (7), we calculate the standardized error term [ tjz ,
) ] for each day t:  

 

 
tj

tj
tjz

,

,
, σ

ε
=) , (8) 

 

for j = RM, GARCH or GJRGARCH and t = 1,…, T. Although the standardized error terms are 

theoretically independent and equally distributed, no assumption is explicitly made regarding the 

asymmetry or thickness of their distribution. 

 

Then, rather than generating random variables from a theoretical distribution like in the MCS 

method, we randomly draw with replacement from the T standardized error terms in order to 

simulate the return diffusion process. Hence, we assume that the empirical distribution of the 

standardized and randomized component from Equation (7) is representative of its expected 

distribution. The simulated return for the first day (T +1) of path i is then computed as: 

 

 1,1,,1, +++ ++= TjTjiTjTji zcR σεφ ))
, (9) 
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for j = RM, GARCH or GJRGARCH. The first simulated return is a function of the last error term 

[ )( ,Tjε ] from the estimation of Equation (7) and the product of the drawn standardized error 

term and the standard deviation estimated from the conditional model j. Similarly, paths of M 

simulated daily returns are generated to represent the M working days of the month, reevaluating 

at each day the conditional means and variances to take into account the error terms generated 

from the draw of the standardized error term of the previous day.  

 

We next compound the M daily simulated returns to obtain a monthly return [ MTTjiR ++ :1,

)
] for each 

path i = 1,…, HS, where HS is the total number of generated paths. We finally evaluate the 

monthly FHS VaR by drawing from the HS paths the monthly pseudo-return that corresponds to 

the target probability p of VaR violation: 

 

 ( )( )pRPercentileVaR
HS

iMTTji
p

MTTj 100,
1:1,:1, =++++ −=

)
, (10) 

 

for j = RM, GARCH or GJRGARCH. We evaluate three monthly univariate FHS VaR models to 

match the three conditional variance specifications. We denote these models as UFHSRM, 

UFHSGARCH and UFHSGJRGARCH. The next subsection addresses the use of MCS and FHS 

VaR models with disaggregate asset returns.  

 

2.3 Multivariate MCS and FHS VaR Models 

We denote the monthly VaR models described previously as univariate since the conditional 

means and variances are evaluated each month using aggregate portfolio returns. An alternative 

is to carry out MCS or FHS on each portfolio asset before aggregating the simulated individual 
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asset returns into the simulated portfolio returns with the appropriate portfolio weights. This 

multivariate approach could lead to more effective VaR performance as the information 

pertaining to each asset is taken into account in the modeling, but it could also result in less 

effective out-of-sample predictive ability as over-parametrization is a greater possibility.  

 

To obtain multivariate MCS VaR models, we first estimate Equation (1) for each of the N 

portfolio assets, and then generate N random variables for each process. Correlations between the 

N random variables, assumed constant, are taken into account using a Cholesky decomposition 

of the covariance matrix5. We next calculate the daily pseudo-returns of the overall portfolio 

using the portfolio weights of the N portfolio assets. We form similarly M daily simulated 

portfolio returns corresponding to the M working days of the month of the VaR measurement, 

and repeat the process to generate MC paths. Once the daily returns are compounded into 

monthly returns, we compute the monthly VaR by drawing from the MC paths the observation 

corresponding to the target probability of VaR violation. 

 

Extending the FHS VaR models from a univariate context to a multivariate context is done 

correspondingly (Barone-Adesi, Giannopoulos and Vosper, 19994, 20025). We first estimate 

Equation (7) for each of the N portfolio assets. We then standardize each T-observations error 

term series using the relevant conditional standard deviation series. The simulation involves 

drawing with replacement a random day t and using the standardized error terms associated with 

                                                 
5 Bollerslev (1990)23 proposes the constant correlation multivariate GARCH model. We avoid more general 

multivariate GARCH models with time-varying correlations as their estimation suffers from the curse of 
dimensionality, faces model-selection problems and requires considerable restrictions. See Audrino and Barone-
Adesi (2005a24, 2005b25) for a discussion of these issues and an example of a computationally feasible technique if 
conditional correlations are warranted for VaR.  
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that day for all portfolio assets to generate their simulated returns. As discussed by Barone-

Adesi, Giannopoulos and Vosper (19994, 20025), the grouping of error terms by day maintains 

the observed co-movements between asset prices, which can be more pronounced during 

extreme events, without requiring difficult-to-estimate conditional correlations. Next, we 

calculate the daily pseudo-return of the overall portfolio for each date drawn, and similarly 

determine M daily portfolio returns for the M working days of the month of the VaR evaluation. 

Once the daily returns are compounded into monthly returns and HS paths are generated, we 

compute the monthly VaR by drawing from the HS paths the observation corresponding to the 

target probability of VaR violation. 

 

Given that we consider three conditional variance models, j = RM, GARCH or GJRGARCH, we 

obtain three multivariate MCS VaR models and three multivariate FHS VaR models. Hereafter, 

these models are identified as MMCSRM, MMCSGARCH, MMCSGJRGARCH, MFHSRM, 

MFHSGARCH and MFHSGJRGARCH. The next subsection presents the unconditional models.  

 

2.4 Unconditional VaR Models 

In order to compare the conditional VaR models described previously to more basic reference 

models, we evaluate four monthly unconditional VaR models. The first model, denoted 

MUNCPAR, is a parametric model assuming a Normal distribution that calculates the VaR 

analytically with the historical mean and standard deviation of the monthly portfolio returns. The 

second model, denoted MHS, performs (unfiltered) historical simulation with monthly portfolio 

returns to generate the HS paths required to evaluate the VaR. The third model, denoted DHS, 

consists of a historical simulation with daily portfolio returns. The fourth model, denoted 
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DUNCMCS, is based on a Monte Carlo simulation using the historical mean and standard 

deviation of daily portfolio returns. In the DHS or DUNCMCS models, the VaR measures are 

ultimately computed from the HS or MC paths of monthly pseudo-returns, obtained from the 

compounding of daily simulated returns. The next subsection details some implementation 

choices and introduces the statistical tests used to evaluate the performance of the VaR models.  

 

2.5 Implementation Choices and Performance Tests 

To sum up, this study examines 16 monthly VaR models: six univariate models with either MCS 

(UMCSGARCH, UMCSGJRGARCH, UMCSRM) or FHS (UFHSGARCH, UFHSGJRGARCH, 

UFHSRM), six multivariate models with either MCS (MMCSGARCH, MMCSGJRGARCH, 

MMCSRM) or FHS (MFHSGARCH, MFHSGJRGARCH, MFHSRM) and four unconditional 

models (MUNCPAR, MHS, DHS, DUNCMCS).  

 

To implement the models, we make the following three choices. First, in our estimation of the 

parameters needed for the out-of-sample VaR measure in a given month, we use a moving 

window of the previous 15 years of historical returns. Second, when simulations are needed, the 

number of simulated paths is 1,000 (MC = HS = 1,000). Third, we evaluate the VaR at two target 

probabilities of VaR violation, p = 1% and p = 5%, in order to examine the robustness of the 

models to two confidence levels.  

 

To test the performance of the models, we apply three “likelihood ratio” tests proposed by 

Christoffersen (1998)11. First, the unconditional coverage test examines if the observed 

proportion of VaR violations is on average equal the target probability p of VaR violation. 
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Second, as a VaR violation should not be predictable with the help of available information, the 

independence test determines if the empirical probabilities of observing a VaR violation when 

there is or is not a violation in the previous period are on average the same. Third, the conditional 

coverage test considers whether a VaR model meets the previous two conditions jointly. The 

next section presents the data used in this study. 

 

3. Data 

We estimate and test 16 monthly VaR models using both monthly returns and daily returns from 

an equally-weighted portfolio of three equity indexes: the U.S. S&P 500 index, the German 

DAX index and the Japanese Nikkei index. The index returns are kept in their local currency, 

thus assuming implicitly that the portfolio is hedged against exchange rate risk. We consider 

American business days in our daily series. When the U.S. equity market is closed, non-

American index returns are delayed to the following American business day. The multivariate 

VaR models use disaggregate returns in a system of three equations, as the portfolio is broken 

down into three international equity indexes. The monthly returns cover the period from January 

1960 to November 2006, a total of 563 observations. The daily returns start on January 4, 1960, 

and end on November 30, 2006, providing a total of 11 750 observations.  

 

Table 1 contains a statistical summary of the daily or monthly domestic index returns. The daily 

and monthly returns are relatively similar, although the German and Japanese indexes are more 

volatile. The diversification effect is important since the equally-weighted portfolio of the three 

indexes shows the lowest standard deviation. The extreme negative returns can be attributed to 

various financial market shocks, including the crash of 1987. 
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[Insert Table 1 here] 

 

Table 1 also presents Jarque-Bera test results on the Normality of return distributions, and Ljung-

Box test results on the serial correlation of returns (Q-test) and squared returns (Q²-test) for the 

past five returns (k=5). For both daily and monthly returns, the Jarque-Bera tests reject the 

hypothesis of Normality and the Q²-tests reject the hypothesis of no serial correlation in squared 

returns. The Q-tests reject the hypothesis of no serial correlation in daily returns (except for the 

Nikkei index), but not in monthly returns. These results suggest that VaR models that account for 

serial correlation as well as asymmetry and fat tails in return distribution should perform better.  

 

4. Empirical Results 

This section describes our empirical results. We emphasize a comparison of the VaR models by 

the following features: univariate versus multivariate, FHS versus MCS, GARCH versus 

GJRGARCH versus RM, and conditional versus unconditional. The first subsection proposes 

summary statistics on the VaR measures at the 5% and 1% target probabilities. The second 

subsection deals with the performance of the VaR models, undertaking an analysis of their 

ability to produce VaR violations with expected frequencies through an examination of tests for 

unconditional coverage, independence and conditional coverage.  

 

4.1 Descriptive Statistics for Monthly VaR Measures 

Table 2 presents descriptive statistics of the monthly VaR measures for an equally-weighted 

portfolio of the S&P 500, DAX and Nikkei indexes. It shows the mean, standard deviation, 
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minimum and maximum of the VaR measures for the 16 models at the 5% and 1% target 

probabilities. With 563 monthly return observations and a fifteen-year estimation window, we 

obtain a total of 383 out-of-sample VaR measures. At the 5% target probability, the VaR 

measures average between 4.4% (for DHS) and 5.9% (for UFHSGJRGARCH), reaching maxima 

from 7.5% (for MUNCPAR) to 22.3% (for UFHSGJRGARCH). At the 1% target probability, 

they average between 6.5% (for DUNCMCS) and 10.7% (for MHS), with maxima from 10.7% 

(for MUNCPAR) to 44.2% (for UFHSGJRGARCH).  

 

[Insert Table 2 here] 

 

Comparing univariate models, which use aggregate portfolio returns, to multivariate models, 

which consider portfolio assets individually, otherwise similar VaR models generally have 

higher mean and volatility in univariate estimation. This finding is especially visible at the 1% 

target probability and for the GARCH and GJRGARCH volatility specifications. Higher average 

VaR measures are more prudent assessment of risk, but overstating risk could lead to transaction 

and opportunity costs for a portfolio with a VaR constraint. The performance tests later explore 

which type of models is the most accurate representation of risk, thus investigating the issue of 

whether the modeling of individual assets leads to useful information or over-parametrization in 

VaR predictions.  

 

Focusing on corresponding FHS versus MCS models, the mean, standard deviation and 

maximum of VaR measures with FHS are generally higher, especially at the 1% target 

probability. We attribute this finding to the asymmetry and fat tails in returns that are 
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incorporated in the empirical distribution behind FHS, but not in the Normal distribution 

underlying MCS.  

 

Concerning the choice of conditional variance models, while there is no clear pattern in standard 

deviations, the GJRGARCH specification consistently produces higher mean VaR measures than 

the other two specifications. This result highlights the role of an asymmetrical volatility effect 

that allows negative shocks to have more impact than positive shocks.  

 

Regarding conditional versus unconditional models, the conditional VaR measures have higher 

volatility, reflecting their ability to quickly adapt to new financial information. They also show 

higher mean than the unconditional models using daily data, but similar mean than the ones 

using monthly data. We explain this difference by the presence of positive autocorrelation in 

daily returns. It results in realized monthly returns more extreme than their simulated 

counterparts that are generated assuming independence in daily returns.  

 

4.2 Performance Tests of Monthly VaR Models 

4.2.1 Unconditional Coverage Tests 

Table 3 (in the first two columns for each target probability) reports the results of the 

unconditional coverage test, which verifies whether the observed proportion of VaR violations 

corresponds to what is expected at the 5% or 1% target probabilities. The results show that the 

realized proportion of VaR violations is higher than the target probability in all cases. For 

example, the observed proportions vary between 5.7% (for MHS) and 9.1% (for DHS) at the 5% 

target probability, and between 1.0% (for MHS) and 4.9% (for DUNCMCS) at the 1% target 
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probability. The VaR models studied thus underestimate the risk of the portfolio at the monthly 

horizon.  

 

[Insert Table 3 here] 

 

The only models not rejected at the 90% confidence level by the unconditional coverage test are 

the MHS, UFHSGARCH, UFHSGJRGARCH and UMCSGJRGARCH models, which have 

respectively observed proportions of VaR violations of 5.7%, 6.5%, 6.0% and 6.0% at the 5% 

target probability and of 1.0%, 1.8%, 1.8% and 1.8% at the 1% target probability. Except for the 

MHS model, these models are based on univariate simulations with a GARCH-type volatility 

specification. An analysis of their features reveals why these models do relatively better than the 

other models.  

 

First, the unconditional coverage results are noticeably better when choosing the GJRGARCH 

specification rather than the GARCH or RM specifications. In fact, the inclusion of the 

asymmetrical GARCH volatility effect is the most important feature in monthly VaR modeling 

since only one of the eight cases involving this specification is rejected at the 95% confidence 

level. Second, the use of the realized distribution in the FHS technique rather than the Normal 

distribution in the MCS technique generally leads to slightly better results, except for RM-type 

models. Third, the estimation using the aggregate portfolio return instead of the individual asset 

returns improves the performance of the VaR models. Three of the six univariate VaR models 

are never rejected while all multivariate models are rejected at least once at the confidence level 

of 90%. Finally, the simple unconditional models using monthly data (MHS and MUNCPAR) 
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present the best results in the unconditional coverage tests at the 5% target probability. However, 

the independence and conditional coverage tests will be better suited to examine whether the 

static modeling of the return distribution in unconditional models is appropriate.  

 

4.2.2 Independence Tests 

Table 3 (in the last two columns for each target probability) shows the results of the 

independence test. This test analyzes whether the proportion of VaR violations when there is a 

violation in the previous month (which is reported in the table) is significantly different from the 

one when there is not a violation in the previous month. The results indicate that the 

independence test does not reject any of the conditional VaR models. Their proportions of 

consecutive VaR violations vary between 6.1% (for UFHSRM) and 11.8% (for MFHSRM) at the 

5% target probability, and between 0.0% (for all but MMCSGARCH) and 6.3% (for 

MMCSGARCH) at the 1% target probability. The selection of univariate versus multivariate 

models, FHS versus MCS models, or GARCH versus GJRGARCH versus RM models has 

negligible influence on these test results.  

 

By contrast, for the unconditional VaR models, six of the eight tests reject the independence 

hypothesis at the 90% confidence level. In particular, the unconditional VaR models are rejected 

in all cases at the 1% target probability or when they are estimated with monthly data. The 

proportions of consecutive VaR violations for the unconditional models that did well in the 

unconditional coverage tests (MHS and MUNCPAR) are greater than 16.7% at the 5% target 

probability and 22.2% at the 1% target probability. These results confirm that unconditional 
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models do not adjust adequately to periods of greater market volatility, producing measures that 

are significantly biased downward following violations.  

 

4.2.3 Conditional Coverage Tests 

Table 4 presents the results of the conditional coverage test. This test jointly verifies whether 

consecutive VaR violations are independent and if the observed proportion of violations 

corresponds to the target probability. The table also gives the average deviation between the 

realized return and the VaR when all models simultaneously have a VaR violation. This statistic 

provides an estimate of the loss incurred beyond the value announced by the VaR. Similar to the 

findings for the unconditional coverage test, the results show rejections of the VaR models for at 

least one of the two target probabilities in numerous cases. Average losses beyond the VaR in 

violation situations are between 3.2% (for MMCSRM) and 5.1% (for DUNCMCS) at the 5% 

target probability and between 4.7% (for UFHSGARCH) and 8.2% (for DUNCMCS) at the 1% 

target probability.  

 

[Insert table 4 here] 

 

Corroborating previous results, univariate VaR models with GJRGARCH volatility are once 

again the best performing models according to the conditional coverage test results since they are 

rejected in only one of the eight cases. More specifically, the UFHSGJRGARCH, 

UMCSGJRGARCH and MFHSGJRGARCH models are never rejected at the 1% or the 5% 

target probabilities, a result also found for the UFHSGARCH and MFHSGARCH models. 

Furthermore, they generally present the smallest average deviations between the realized return 
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and its VaR measure when violations occur, thus creating less surprises. VaR models estimated 

with GARCH volatility are rejected in four of the eight cases, more specifically when the MCS 

technique is involved instead of the FHS technique. As all the FHSGJRGARCH VaR models are 

never rejected at the 90% confidence level, the most crucial features of the best performing 

models are the consideration of the asymmetric effect that positive and negative shocks have on 

the conditional volatility and, less significantly, the fat tail distribution captured by the FHS 

technique. Finally, the estimation of multivariate instead of univariate parameterizations, with six 

rejected models each, does not make a significant difference.  

 

5. Conclusion 

We study the performance of sixteen monthly VaR models for an equally-weighted equity 

portfolio of the U.S. S&P 500 index, the German DAX index and the Japanese Nikkei index. We 

evaluate the monthly VaR measures with either Monte Carlo simulation or filtered historical 

simulation, and by either modeling directly the daily portfolio returns (the univariate approach) 

or modeling individually the daily returns on the three portfolio assets (the multivariate 

approach). For each methodology, we consider three conditional variance models: the 

GARCH(1,1) specification of Bollerslev (1986)8, the asymmetric GARCH(1,1) specification of 

Glosten, Jagannathan and Runkle (1993)9 and the RiskMetrics specification of J.P. Morgan & 

Co.10 Finally, we compare our twelve univariate and multivariate conditional VaR models to four 

unconditional VaR models. 

 

We implement three tests proposed by Christoffersen (1998)11 to assess the performance of the 

out-of-sample VaR predictions of the different models. In the unconditional coverage test, the 
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results suggest that all models undervalue the risk of the equity portfolio. At the 90% confidence 

level, we cannot reject the hypothesis that the observed proportion of VaR violations is equal to 

target probabilities for four models: the univariate asymmetric and symmetric GARCH VaR 

models with filtered historical simulation (UFHSGJRGARCH and UFHSGARCH), the 

univariate asymmetric GARCH VaR models with Monte Carlo simulation (UMCSGJRGARCH) 

and the (unconditional) historical simulation VaR model. In the independence test, the results 

support the conditional models, but are not favorable to the unconditional models. As these static 

models do not adjust quickly to new market information, they generate abnormally high 

proportions of consecutive VaR violations. Finally, in the conditional coverage test, which 

jointly examines the null hypotheses of the unconditional coverage and independence tests, the 

results confirm that the univariate asymmetric and symmetric GARCH VaR models with filtered 

historical simulation and the univariate asymmetric GARCH VaR models with Monte Carlo 

simulation are among the best performing models. However, two more GARCH (asymmetric 

and symmetric) VaR models estimated in a multivariate FHS framework are also not rejected at 

the 90% confidence level. 

 

Further analysis of the empirical results determines that the key to the relative success of these 

models compare to the other models is the use of the asymmetric GJRGARCH specification, 

which allows negative shocks to have more impact than positive shocks on the conditional 

volatility. Other features, namely the multivariate approach that considers the information in the 

disaggregate portfolio returns and the FHS technique that accounts for the skewness and fat tails 

of the realized return distribution, only lead to mitigated improvements in performance.  
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Table 1 
Summary Statistics of the Index Returns 

This table presents the mean, standard deviation, maximum, minimum and Jarque-Bera Normality test statistics, as 
well as the test statistics on autocorrelated returns (Q-tests) and squared returns (Q²-tests) for the past five returns 
(k=5). The monthly data series on the U.S. S&P500, the German DAX and the Japanese Nikkei equity indexes cover 
the period from January 1960 to November 2006, a total of 563 observations. The daily data series for the three 
indexes cover the period from January 4, 1960, to November 30, 2006, for a total of 11 750 observations. The 
symbols * and ** indicate that the statistics are significant at the confidence levels of 95% and 99%, respectively.  
Indices Mean Standard 

Deviation 
Max Min Jarque-Bera 

Test 
Q-Test  
(k=5) 

Q²-Test (k=5) 

Monthly        
Portfolio 0.618% 3.826% 12.630% -16.426% 133.469*** 4.309 23.389*** 
S&P 500 0.600% 4.098% 15.104% -15.759%   25.750*** 5.571 30.974*** 
DAX 0.585% 5.607% 20.038% -28.202% 189.318*** 1.569 22.776*** 
Nikkei 0.668% 5.309% 19.551% -20.814%   42.161*** 3.579 57.946*** 
Daily        
Portfolio 0.030% 0.728% 5.642% -7.623% 17075.110*** 343.970*** 1877.500***
S&P 500 0.029% 0.899% 5.573% -7.113%   9723.420***   81.398*** 1976.000*** 
DAX 0.028% 1.171% 9.278% -12.812% 26613.340***   40.312*** 2204.100*** 
Nikkei 0.032% 1.145% 13.236% -17.253% 58444.940*** 4.625 1175.400*** 
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Table 2 
Summary Statistics of the Monthly VaR Measures 

This table presents the mean, standard deviation, minimum and maximum of the monthly VaR measures estimated 
at the 5% and 1% target probabilities for an equally-weighted portfolio of the S&P 500, DAX and Nikkei equity 
indexes. The VaR series cover the period from January 1975 to November 2006 for 383 VaR observations. See 
Section 2 for a description of the VaR models. Refer to Table 1 for a description of the data.  
 Pr( pp VaRR −< ) = 5% Pr( pp VaRR −< ) = 1% 

VaR Models Mean Standard 
Deviation Min Max  Mean Standard 

Deviation Min Max  

Unconditional models         
With Monthly Returns         
MHS 5.931% 1.168% 3.908% 8.783% 10.707% 2.583% 7.381% 14.281% 
MUNCPAR 5.448% 0.862% 4.119% 7.455% 7.980% 1.192% 6.277% 10.676% 
With Daily Returns         
DHS 4.443% 1.137% 2.941% 7.600% 6.785% 1.660% 4.640% 11.298% 
DUNCMCS 4.458% 1.151% 2.706% 7.659% 6.536% 1.616% 4.403% 10.931% 
          
Conditional models         
With Daily Returns         
UFHSGARCH 5.628% 2.394% 2.487% 19.866% 9.533% 4.025% 4.390% 31.066% 
UFHSGJRGARCH 5.852% 2.571% 2.983% 22.291% 10.513% 4.799% 5.460% 44.160% 
UFHSRM 4.807% 2.398% 1.708% 15.744% 7.975% 4.094% 2.720% 30.538% 
          
UMCSGARCH 5.015% 2.040% 2.622% 18.131% 8.260% 3.310% 4.596% 30.595% 
UMCSGJRGARCH 5.843% 2.411% 3.155% 18.512% 10.021% 4.156% 4.978% 33.592% 
UMCSRM 5.231% 2.491% 1.998% 15.536% 7.748% 3.739% 3.023% 23.162% 
          
MFHSGARCH 5.242% 2.070% 2.512% 20.421% 8.776% 3.582% 4.223% 34.647% 
MFHSGJRGARCH 5.232% 2.031% 2.771% 20.532% 9.088% 3.832% 4.471% 38.372% 
MFHSRM 4.803% 2.142% 2.182% 15.109% 8.035% 3.915% 3.186% 26.379% 
          
MMCSGARCH 4.789% 2.014% 2.424% 21.379% 7.452% 3.007% 3.576% 29.325% 
MMCSGJRGARCH 5.387% 2.090% 2.734% 21.001% 8.662% 3.566% 4.455% 37.737% 
MMCSRM 5.723% 2.640% 2.267% 19.014% 8.280% 3.824% 3.325% 24.459% 
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Table 3 
Unconditional Coverage Tests and Independence Tests of the Monthly VaR Models  

This table presents the results of the unconditional coverage tests and independence tests proposed by Christoffersen 
(1998) of the monthly VaR measures estimated at the 5% and 1% target probabilities for an equally-weighted 
portfolio of the S&P 500, DAX and Nikkei equity indexes. It contains the observed proportion of VaR violation, the 
likelihood ratio of the unconditional coverage test, the observed proportion of consecutive VaR violation and the 
likelihood ratio of the independence test. The symbols *, ** and *** indicate that the statistics are significant at the 
confidence levels of 90%, 95% and 99%, respectively. See Section 2 for a description of the VaR models. Refer to 
Table 1 for a description of the data. 
 Pr( pp VaRR −< ) = 5% Pr( pp VaRR −< ) = 1% 

VaR Models  
 

Uncond. 
Coverage 

Test 
(Prop of 

Violation)  

Uncond. 
Coverage 

Test 
(Likelihood 

Ratio) 

Independ. 
Test 

(Prop of 
Consec. 

Violation) 

Independ. 
Test 

(Likelihood 
Ratio) 

Uncond. 
Coverage 

Test 
(Prop of 

Violation) 

Uncond. 
Test 

(Likelihood 
Ratio) 

Independ. 
Test 

(Prop of 
Consec. 

Violation) 

Independ. 
Test 

(Likelihood 
Ratio) 

Unconditional models         
With Monthly Returns         
MHS 5.744% 0.427 18.182% 4.626** 1.044% 0.008 25.000% 4.960** 
MUNCPAR 6.266% 1.201 16.667% 3.543* 2.350% 5.109** 22.222% 6.240** 
With Daily Returns         
DHS 9.138% 11.214*** 11.429% 0.416 4.439% 24.795*** 17.647% 4.534** 
DUNCMCS 8.616% 8.752*** 12.121% 0.685 4.961% 31.135*** 15.789% 3.422* 
          
Conditional models         
With Daily Returns         
UFHSGARCH 6.527% 1.723 8.000% 0.222 1.828% 2.129 0.000% 0.298 
UFHSGJRGARCH 6.005% 0.768 8.696% 0.400 1.828% 2.129 0.000% 0.298 
UFHSRM 8.616%     8.752*** 6.061% 0.514 3.394%   13.658*** 0.000% 0.985 
          
UMCSGARCH 8.094%      6.555** 9.677% 0.274 2.611%     6.955*** 0.000% 0.591 
UMCSGJRGARCH 6.005% 0.768 8.696% 0.400 1.828% 2.129 0.000% 0.298 
UMCSRM 7.833%     5.560** 6.667% 0.230 3.394%   13.658*** 0.000% 0.985 
          
MFHSGARCH 7.311% 3.792* 10.714% 0.607 1.828% 2.129 0.000% 0.298 
MFHSGJRGARCH 7.311% 3.792* 10.714% 0.607 1.828% 2.129 0.000% 0.298 
MFHSRM 8.877%    9.950*** 11.765% 0.535 2.872%     9.007*** 0.000% 0.711 
          
MMCSGARCH 8.094%   6.555**   9.677% 0.274 4.178% 21.806*** 6.250% 0.241 
MMCSGJRGARCH 7.050% 3.021* 11.111% 0.777 2.611%    6.955*** 0.000% 0.591 
MMCSRM 7.311% 3.792*   7.143% 0.154 2.611%    6.955*** 0.000% 0.591 
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Table 4 
Conditional Coverage Tests of the Monthly VaR Models 

This table presents the results of the conditional coverage tests proposed by Christoffersen (1998) of the monthly 
VaR measures estimated at the 5% and 1% target probabilities for an equally-weighted portfolio of the S&P 500, 
DAX and Nikkei equity indexes. It contains the average deviation between the return and the VaR when all models 
have a VaR violation, denoted by )( ,ipppp VaRRVaRR −<+ , and the likelihood ratio of the conditional coverage test. The 

symbols *, ** and *** indicate that the statistics are significant at the confidence levels of 90%, 95% and 99%, 
respectively. See Section 2 for a description of the VaR models. Refer to Table 1 for a description of the data. 
 Pr( pp VaRR −< ) = 5% Pr( pp VaRR −< ) = 1% 

VaR Models )( ,ipppp VaRRVaRR −<+
Conditional  

Coverage Test 
(Likelihood Ratio) 

)( ,ipppp VaRRVaRR −<+  
Conditional  

Coverage Test 
(Likelihood Ratio)

Unconditional models     
With Monthly Returns     
MHS -3.915% 5.053* -5.019% 4.967* 
MUNCPAR -4.145% 4.743* -6.953%   11.349*** 
With Daily Returns       
DHS -5.134%  11.629*** -8.000%    29.329*** 
DUNCMCS -5.135%    9.436*** -8.244%    34.557*** 
        
Conditional models       
With Daily Returns     
UFHSGARCH -3.817% 1.946 -4.714% 2.428 
UFHSGJRGARCH -3.811% 1.168 -4.858% 3.876 
UFHSRM -4.270%      9.266*** -6.752%     14.643*** 
        
UMCSGARCH -4.499%     6.829** -6.104%      7.546** 
UMCSGJRGARCH -3.796% 1.168 -4.852% 2.428 
UMCSRM -3.795%   5.790* -6.688%     14.643*** 
        
MFHSGARCH -3.974% 4.399 -6.926% 2.428 
MFHSGJRGARCH -4.156% 4.399 -6.442% 2.428 
MFHSRM -4.497%     10.486*** -7.215%        9.718*** 
        
MMCSGARCH -4.490%     6.829** -6.919% 22.047*** 
MMCSGJRGARCH -3.892% 3.799 -6.133%    7.546*** 
MMCSRM -3.184% 3.945 -5.974%    7.546*** 
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